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Abstract: Fused deposition modeling (FDM), as one of the additive manufacturing processes, is 

known for strong layer adhesion suitable for prototypes and end-use items. This study used a mul-

tiple regression model and statistical analysis to explore the dimensional accuracy of FDM objects. 

Factors such as inclination angle, layer thickness, support space, and raster angle were examined. 

Machine learning models (Gaussian process regression (GPR), support vector machines (SVM), and 

artificial neural network (ANN)) predicted dimensions using 81 datapoints. The mean squared di-

mensional error (MSDE) between the measured and designed surface profiles was selected as an 

output for the dimensional accuracy. Support spacing, layer thickness, and raster angle were deter-

mined to be statistically significant, and all factors were confirmed as significant predictors. The 

coefficients of determination for multiple linear regression, GPR, SVM, and ANN models were 76%, 

98%, 93%, and 99%, respectively. The mean absolute errors (MAEs)—errors between the measured 

and the predicted MSDEs—were 0.020 mm and 0.034 mm, respectively, for GPR and SVM models. 

The MAEs for ANN models were 0.0055 mm for supporting cases and 2.1468 × 10−5 mm for non-

supporting cases. 

Keywords: fused deposition modeling; multiple regression model; ANOVA; artificial neural  

network 

 

1. Introduction 

Additive manufacturing (AM) systems have undergone rapid advancements in re-

cent decades, garnering significant research interest and widespread media attention. AM 

technology has demonstrated immense potential in the production of highly valuable and 

intricate products and parts. This manufacturing process involves the layer-by-layer ad-

dition of materials, utilizing the geometry directly obtained from computer-aided design 

(CAD) models [1–3]. The ability to create customized and complex objects through addi-

tive manufacturing opens up new opportunities for the manufacturing industry, enabling 

the production of individually tailored products with enhanced functionality and design 

[4–6]. In recent times, there has been notable progress in the utilization and advancement 

of various AM processes, encompassing a wide range of techniques and materials, with a 

particular focus on polymers [7]. Moreover, the extensive range of applications offered by 

additive manufacturing plays a pivotal role in driving the remarkable growth of the asso-

ciated market. This is attributed to the capability of additive manufacturing to cater to 

diverse sectors within the manufacturing industry, including household electrical appli-

ances, aerospace, automotive, sportswear, bio/medical devices, integrated circuit boards, 

the food industry, etc. [8–14]. 

AM processes widely used are material jetting, vat photopolymerization, powder 

bed fusion, material and binder jetting, and material extrusion. The material jetting 
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process uses the multijet printing (MJP) technique that uses piezo printhead technology 

to deposit materials layer by layer. MJP is resin-based 3D printing, and UV-curable resins 

and waxes, such as acrylates, epoxies, polylactide, polycaprolactone, etc., are used in the 

MJP technique. The vat photopolymerization process uses stereolithography (SLA) and 

digital light processing (DLP). SLA uses a UV radiation beam to solidify photo resin layers 

on a vat of liquid resin. DLP uses light projectors below the resin and projects an entire 

layer at a time using an array of micrometer-sized mirrors. SLA and DLP are resin-based 

3D printings as well, and UV-curable resins, waxes, and resins with photo-active mono-

mers, such as ABS, acrylics, epoxides, polycaprolactone, poly lactic-co-glycolic acid, etc., 

are used. The power bed fusion process applies the selective laser sintering (SLS) tech-

nique that uses a laser beam or sintering to solidify polymer powder particles layer by 

layer. Compacted fine powders or thermoplastics materials, such as nylon, polycaprolac-

tone, polyvinyl alcohol, polylactide, etc., are used. The material extrusion process uses the 

fused deposition modeling (FDM) method, and a molten material via a nozzle, such as a 

polymer, is deposited layer by layer to create a 3D product. Thermoplastics and polymers, 

such as ABS, polylactic acid (PLA), polycaprolactone (PCL), polyethylene, nylon, etc., are 

used [4,5,8,15]. 

FDM technology is a representative technique of material extrusion. It melts thermo-

plastics and extrudes melted material via a nozzle. FDM is becoming more attractive for 

3D printing with increasing applicable material in various fields. FDM parts exhibit good 

layer adhesion and strength, making them suitable for functional prototypes and end-use 

parts. The technology also offers design flexibility, allowing for the creation of complex 

geometries and the integration of features like threads and hinges. Additionally, FDM is 

known for its speed in producing larger parts. Along with the increase in the use of FDM, 

the result prediction, such as dimensional accuracy and surface quality, is also gaining a 

lot of attention. FDM can easily be applied for all of these; however, predicting the printing 

result is one of the main challenges in FDM because the printing parameters and the con-

ditions are enormous. For example, various printing parameters, such as inclination angle, 

layer thickness, support spacing, and raster angle, should be considered before printing 

as well as printing conditions like printing temperature, printing speed, and fill density 

[4,5,8,16,17]. 

Researchers have introduced and released the dimensional accuracy of parts based 

on polymer materials extracted using FDM. Chang and Huang [18] investigated the accu-

racy of an FDM model with various elements of transmission machinery and differing 

filament diameter. Therefore, they considered profile error and extruding apertures as 

two substantial quality factors. An original image measurement method for investigating 

profile error using a series of standard cylinders laid on the contour of the part was pro-

posed, and the effects of extruding apertures on model accuracies, such as contour width, 

contour depth, part raster width, and raster angle, were analyzed using the Taguchi 

method. From the results, the contour width is the important factor affecting profile error 

and aperture area. Saqid and Urbanic [19] studied the impact of geometric forms along 

with process parameters on part accuracy for the FDM process. A general factorial design, 

with simple geometric shapes, including thick-wall and thin-wall features, was devel-

oped, and three response variables (perpendicularity, cylindricity, and flatness) were 

measured to investigate accuracy. The effects of process parameters, such as the position 

of the part in the work envelope, layer thickness, and orientation of the test models, were 

investigated. They proposed that the geometry and feature interfaces affected the accu-

racy more than the process parameter. Akbas et al. [20] investigated the effect of the nozzle 

temperature and feed rates on the dimensions of an FDM part made of ABS and PLA 

experimentally and numerically. An increase in the feed rate resulted in a reduction in 

strip width. Furthermore, when evaluating the effect of nozzle temperature and feed rate 

on strip width, it was found that the measurement positions had a more significant influ-

ence. The numerical model accurately predicted the experimental data, exhibiting a high 

level of agreement. However, some disparities were noted at elevated feed rates and 
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nozzle temperatures. Park et al. [21] investigated the dimensional accuracy and surface 

characteristics of different areas in 3D-printed dental casts made with various 3D printing 

methods. From the superimposing analysis, it was observed that FDM exhibited more 

systematic deviations compared to DLP, PolyJet, and SLA techniques. The three-dimen-

sional deviations at each cylinder location were found to be the lowest in the left canine 

region, and deviations increased as the distance from this specific site increased in all the 

studied groups. 

Machine learning technology has experienced notable progress in recent years, pri-

marily attributed to the availability of extensive datasets, enhanced computational capa-

bilities, and refined algorithms. Machine learning offers several advantages such as its 

proficiency in handling voluminous and intricate datasets, its capability to automate de-

cision-making processes, its ability to identify intricate patterns or anomalies that may 

pose difficulties for humans, and its potential to enhance predictive accuracy and generate 

valuable insights over time [22,23]. Consequently, machine learning has the potential to 

augment efficiency, precision, and innovation within numerous industries. Nonetheless, 

the field also presents challenges concerning the quality of data, potential biases within da-

tasets or algorithms, the interpretability of complex models, and ethical considerations [24,25]. 

Various prediction and optimization studies related to a machine learning model 

have been released. Min et al. [26] predicted and optimized the shear strength and curing 

time of non-conductive adhesives (NCAs) using an artificial neural network (ANN) 

model. The model accuracy was improved by 28.9–35.2% compared to other studies. They 

proposed the optimized NCA formulation as the range of 0.2137 × (resin content in phr) 

+ (catalyst content in phr) ≥ 35.87 for mass production requirements. Sood et al. [27] stud-

ied the statistical analysis of the dimensional accuracy in the FDM process using parame-

ters such as layer thickness, part orientation, raster angle, air gap, and raster width. To 

optimize the percentage change in length, width, and thickness simultaneously, the grey 

Taguchi method is employed to determine the optimal levels of process parameters. In 

addition, they predicted overall dimensional accuracy using the ANN model. The errors 

between predicted data and measured data were 0–3.5%. Mohamed et al. [28] investigated 

the effects of FDM fabrication conditions on dimensional accuracy. An ANN model was 

employed to predict and optimize the effects of six operating parameters including slice 

thickness, raster air gap, deposition angle, print direction, width, and perimeters. The R2 

was over 99%, and the minimum percentage differences in length (0.244 mm, 4%) and 

diameter (0.480 mm, 3%) were obtained. 

Recently, studies based on the prediction and optimization of experimental parame-

ters for additive manufacturing have emerged. However, the FDM process is character-

ized by its high complexity, and there is a scarcity of theoretical models available for the 

purpose of prediction. The complexity of the printed 3D object has a detrimental effect on 

its accuracy, resulting in decreased levels of precision. From a review of the literature, it 

can be seen that some AM processes have limitations for comprehensive mathematical 

models, making it difficult to predict and optimize parameters accurately. AM parameter 

optimization often involves multiple interdependent variables. Optimizing across numer-

ous variables can be challenging and may lead to suboptimal solutions. Moreover, the 

accuracies of the objects—including support bars and inclination angle—preventing the 

reflection of the object, were not studied. In this paper, 3D objects were printed with var-

ious support bars and inclination angles through the FDM process, and the quality of the 

3D-printed object were evaluated. First, primary factors were analyzed for the improve-

ment of the printing quality through the multiple regression model and analysis of vari-

ance. Second, prediction machine learning models were developed for predicting printing 

accuracy. From the results, the prediction models for the dimensional accuracies of FDM 

3D-printed objects were developed. 
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2. Experiments 

2.1. Materials and 3D Printing 

In this study, PLA was employed as the material for FDM 3D printing. Filament-type 

PLA was provided by Polymaker (Shanghai, China) and was used for 3D printing, and 

the filament diameter was 2.85 mm. The material properties are listed in Table 1.  

The FDM 3D printing equipment was Ultimaker 2+ (Ultimaker, Utrecht, The Nether-

lands) with the principal specifications detailed in Table 2. The design of three-dimen-

sional models for 3D printing was executed using Solidworks 2021 (SolidWorks Corp., 

Dassault Systèmes, Waltham, MA, USA). Subsequently, the designed 3D model was saved 

in the standard triangle language (STL) file format. Each model was sliced by Ultimaker 

Cura 5.0.0 (Ultimaker, Utrecht, The Netherlands), and G-code was generated. 

Table 1. Material properties. 

Material 

Density 

(g/cm3 at 

21.5 °C) 

Glass 

Transition 

Temp. (°C) 

Melting 

Temp. 

(°C) 

Young’s 

Modulus 

(MPa) 

Tensile 

Strength 

(MPa) 

Tensile 

Strength 

(MPa) 

PLA 1.17–1.24 61 150 2636 ± 330 
46.6 ± 0.9 

(XY axis) 

43.5 ± 3.1 

(Z axis) 

Table 2. Specifications of FDM 3D printing equipment 

Model 
Ultimaker 2+ (Ultimaker, 

The Netherlands) 

Build volume (mm) 223 × 220 × 205 

Layer resolution (µm) @ 0.4 mm nozzle 20–200 

Accuracy (µm) 
12.5 in XY axis 

5.0 in Z axis 

The base model dimensions encompass 10 mm × 10 mm × 25 mm along the XYZ axis. 

Variable printing parameters included the inclination angle, layer thickness, support spac-

ing, and raster angle (Table 3). An illustrative model design is presented in Figure 1. The 

models featuring inclination angles of 60° and 75° were printed without the application of 

support structures. 

Table 3. Design parameters. 

Factors 
Level 

1 2 3 4 5 

Inclination angle (°) 15 30 45 60 75 

Layer thickness (mm) 0.2 0.4 0.6 - - 

Support space (mm) 5 10 15 - - 

Raster angle (°) 0 45 90 - - 

 

Figure 1. Designed 3D object with 45° inclination angle and support space of (a) 5 mm, (b) 10 mm, 

and (c) 15 mm. 
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For comparison of the variable parameters, additional printing conditions including 

printing temperature, nozzle movement speed, and infill density were held constant (Table 4). 

Subsequent to printing, all 3D objects were subjected to a 3 h cooling period. 

Table 4. Printing conditions. 

Material PLA 

Nozzle temperature (°C) 210 

Bed temperature (°C) 60 

Nozzle moving speed (mm/s) 60 

Infill density (%) 100 

2.2. Measurement of the Printed Object 

The surface profile of the 3D object printed by the FDM process was measured by the 

optical measurement inspection system. The measuring equipment was Datastar 200 from 

RAM Optical Instrumentation Incorporated (Rochester, NY, USA) with the main specifi-

cations detailed in Table 5. 

The base, slope, and top lines of the side surfaces of the objects were inspected to 

investigate the dimensional accuracy between measured and designed profiles, and the 

edges of the side surface were subjected to scanning. The base line of the measured surface 

profile was considered as the parallel line along the X-axis, meaning that it was assumed 

to match the designed base line of the 3D object; then, the slope and top lines were utilized 

for dimensional accuracy analysis (Figure 2). The mean squared dimensional error 

(MSDE) between measured and designed profiles in the slope and top lines was calculated 

and was denoted as a representative output for the dimensional accuracy of this study. 

 

Figure 2. Measured profile of the object. 

Table 5. Specifications of RAM optical measurement inspection system. 

Model 
Datastar 200 (RAM Optical Instrumentation 

Incorporated, Rochester, NY, USA) 

Measuring range (mm) 200 × 150 × 150 

Optical magnification ×35–×280 

Resolution (µm) 0.5 

Max. measured load (kg) 23 

Accuracy (µm) 
2.5 in XY axis 

5.0 in Z axis 

2.3. Regression Models 

In this study, three types of regression models were employed to predict 3D object 

dimensions. A multiple linear regression model was employed for the analysis, while 

Gaussian process regression (GPR) and support vector machines (SVM) algorithms were 
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implemented using MATLAB version R2021a. Additionally, an ANN model was con-

structed using Python for the purposes of comparison and evaluation. 

The input parameters were inclination angle, layer thickness, support space, and ras-

ter angle, and the output parameters were the MDSEs for dimensional accuracies of the 

objects. A total of 81 datapoints were used for the prediction of 3D objects. These 81 data-

points were randomly divided into training, validation, and test datasets at a ratio of 70%, 

15%, and 15%, respectively. 

ANN model was employed with three hidden layers and 32 nodes. A rectified linear 

unit (ReLU) activation function was used. The mean absolute errors (MAEs) loss function 

and adaptive moment estimation (ADAM) optimizer, including a learning rate of 0.001, 

β1 = 0.9, β2 = 0.999, and ε = 10−8, were applied in model training and optimization. The 

models were trained for 200 epochs with minibatches of 10 to avoid the overfitting issue. 

The flow chart for ANN model is shown in Figure 3. 

 

Figure 3. The flow chart for ANN model. 

3. Results 

3.1. Stacking Profiles 

All designed 3D objects were printed three times to assess the stacking profile, which 

was defined as the outline of the printed object in the XZ plane. The printed objects formed 

a rectangular bar without noticeable flaw (Figure 4a). The printed 3D objects, with a 45° 

inclination angle and support spaces of 5, 10, and 15 mm, are shown in Figure 4b. 

 

 

Figure 4. Printed 3D objects of (a) all objects and (b) with 45° inclination angle and support spaces 

of 5 mm, 10 mm, and 15 mm. 

The stacking profiles were used to evaluate the dimensional accuracy compared to 

the original design. Measured profiles were expressed in red lines and compared to the 

designed profiles in black lines (Figure 5). The differences between measured and de-

signed profiles were recorded and set as output for the dataset.  
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Figure 5. Stacking profiles: (a) measured stacking profile and (b) comparing measured and designed 

profiles. 

3.2. Correlation Analysis 

Tables 6 and 7 show the correlation coefficients between process parameters and the 

MSDE (output) for supporting cases and non-supporting cases, respectively. As shown in 

Table 6, Pearson correlation coefficients for support spacing, layer thickness, raster angle, 

and inclination angle were −0.436, 0.565, 0.477, and −0.152, respectively. p-values were 0 

for supporting spacing, layer thickness, and raster angle and 0.177 for inclination angle. 

As shown in Table 7, Pearson correlation coefficients for layer thickness, raster angle, and 

inclination angle were 0.754, −0.254, and 0.157, respectively. p-values for layer thickness, 

raster angle, and inclination angle were 0, 0.308, and 0.534, respectively. 

In cases where support was utilized, the influences of support spacing, layer thick-

ness, and raster angle were found to be statistically significant relationships with the de-

pendent variable, as indicated by a p-value below 0.05. By the Pearson correlation coeffi-

cients, support spacing exhibited a negative relationship, while layer thickness and raster 

angle indicated positive relationships, and layer thickness exhibited the most prominent 

degree of correlation. In cases where support was not utilized, only layer thickness exhib-

ited statistically significant influence, as evidenced by p-values below 0.05 and the highest 

positive level of correlation. 

Table 6. The correlation coefficient for supporting cases. 

 Supporting Spacing Layer Thickness Raster Angle Inclination Angle 

Pearson, R −0.436 0.565 0.477 −0.152 

p-value 0.0 0.0 0.0 0.177 

Table 7. The correlation coefficient for non-supporting cases. 

 Layer Thickness Raster Angle Inclination Angle 

Pearson, R 0.754 −0.254 0.157 

p-value 0.0 0.308 0.534 

3.3. Multiple Linear Regression Model Analysis 

The multiple linear regression model was employed to investigate the relationships 

between the parameters (support spacing, layer thickness, raster angle, and inclination 

angle) and the MSDE. Variable values of multiple linear regression models for supporting 

or non-supporting cases are listed in Tables 8 and 9. The coefficient of determination (R2) 

for the support object used four input parameters, namely, support spacing, layer thick-

ness, raster angle, and inclination angle, and one output parameter, namely, the MSDE. 

The R2 for the non-support object used three parameters, namely, layer thickness, raster 
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angle, and inclination angle, and one output parameter, namely, the MSDE. The R2s are 

listed in Table 10.  

In the case of the supporting object, the p-values for support spacing, layer thickness, 

raster angle, and inclination angle were 0.043, 0.0, 0.0, 0.009, and 0.0, respectively. The t-

values for the support spacing, layer thickness, raster angle, and inclination angle, which 

had p-values below 0.05, were 10.03, 8.48, −2.67, and −7.75, respectively. Their standard 

errors were 0.00226, 0.05653, 0.000251, and 0.000754. The constant term, represented by 

0.08614 of the coefficient, had a standard error of 0.0418. The t-value was 2.06, and the p-

value was 0.043, indicating a statistically significant relationship. This implies that even 

when all predictor variables are zero, the constant term has a significant impact on the 

dependent variable. The MSDE, which was representative as the output, can be calculated 

as 0.0861 + 0.0277 × supporting space + 0.479 × layer thickness − 0.000677 × raster angle − 

0.00584 × inclination angle. The R2 between the four input parameters and one output pa-

rameter was 0.759. 

In the case of the non-supporting object, the p-values for layer thickness, raster angle, 

and inclination angle were 0, 0.126, and 0.333, respectively. The t-values were 4.82 for layer 

thickness, −1.63 for raster angle, and 1 for inclination angle. Their standard errors were 

0.08251, 0.000367, and 0.001796. The constant term, represented by −0.1115 of the coeffi-

cient, had a standard error of 0.1275. The t-value was −0.87, and the p-value was 0.396, 

indicating no statistically significant relationship. This suggests that when all other pre-

dictor variables are zero, the constant does not significantly influence the dependent var-

iable. The MSDE was calculated as −0.111 + 0.397 × layer thickness − 0.0006 × raster angle 

+ 0.00180 × inclination angle. The R2 between the three parameters and one output param-

eter was 0.659. 

In cases where support was utilized, support spacing, layer thickness, raster angle, 

and inclination angle were found to be statistically significant predictors of the dependent 

variable, as evidenced by p-values below 0.05. Support spacing and layer thickness exhib-

ited positive relationships, while raster angle and inclination angle demonstrated negative 

relationships. In cases where support was not utilized, only layer thickness exhibited a 

statistically significant influence on the dependent variable, while raster angle and incli-

nation angle did not exhibit statistically significant relationships. These findings provide 

valuable insights into the factors influencing the dependent variable and can contribute to 

the optimization and improvement of the studied system. 

Table 8. Variable values of multiple linear regression models for supporting cases. 

 Coefficient Standard Error t p 

Constant 0.08614 0.0418 2.06 0.043 

Support spacing 0.022685 0.002261 10.03 0.0 

Layer thickness 0.47917 0.05653 8.48 0.0 

Raster angle −0.00068 0.000251 −2.69 0.009 

Inclination angle −0.00584 0.000754 −7.75 0.0 

Table 9. Variable values of multiple linear regression model for non-supporting cases. 

 Coefficient Standard Error t p 

Constant −0.1115 0.1275 −0.87 0.396 

Layer thickness 0.3975 0.08251 4.82 0.0 

Raster angle −0.0006 0.000367 −1.63 0.126 

Inclination angle 0.0018 0.001796 1 0.333 

Table 10. The coefficient of determination (R2) of support and non-support objects. 

Object R2 

Support 0.759 

Non-support 0.659 
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3.4. ANOVA Test 

In this study, the main and interaction effects of design parameters on MSDE were 

investigated by using the ANOVA model. The ANOVA results for supporting and non-

supporting cases are listed in Tables 11 and 12. Visual representations of the main and 

interaction effects of design parameters for supportive cases are presented in Figures 6 

and 7, respectively. Correspondingly, Figures 8 and 9 illustrate the effects on MSDE for 

non-supportive cases. 

The ANOVA table provides a comprehensive summary of the analysis, detailing the 

degrees of freedom (DOF), sum of squares (SS), mean squares (MS), and associated p-

values for each factor, alongside the error term, as presented in Table 11. Our findings 

underscore the profound impact of all control parameters—namely, inclination angle, 

support spacing, layer thickness, and raster angle—on the output (MSDE). In Table 11, the 

p-values for all primary factors fall comfortably below the established significance thresh-

old of 0.05, confirming their statistical significance at a confidence level of α = 0.05. On the 

other hand, the interactions between these parameters showed the p-values were greater 

than 0.05, so this suggests that these interaction terms are not statistically significant and 

do not significantly affect the output. 

As illustrated in Figure 6, an increase in the inclination angle (Angle) led to a reduc-

tion in MSDE. Adjusting the inclination angle from 15° to 30° and from 30° to 45° resulted 

in MSDE reductions of 16.88% and 35.32%, respectively. Conversely, an increase in sup-

port spacing (Support) and layer thickness (L.T) was associated with an increase in MSDE. 

Specifically, increasing support spacing from 5 mm to 10 mm and from 10 mm to 15 mm 

led to MSDE increases of 82.31% and 25.81%, respectively. Similarly, elevating layer thick-

ness from 0.2 mm to 0.4 mm and from 0.4 mm to 0.6 mm resulted in MSDE increases of 

61.56% and 22.68%, respectively. The MSDE exhibited a declining trend with rising raster 

angle (R.A) until 45°, beyond which an increase was observed. Notably, the lowest MSDE 

was observed at a raster angle of 45°. Based on the main effect analysis, the optimal com-

bination entailed an inclination angle of 45°, support spacing of 5 mm, layer thickness of 

0.2 mm, and a raster angle of 45°. As depicted in Figure 7, the analysis indicated no sig-

nificant interactions between parameters. 

Table 11. ANOVA table for supporting cases. 

 DOF SS MS p 

Inclination angle 2 0.42420 0.21210 0.000 

Support spacing 2 0.71189 0.35594 0.000 

Layer thickness 2 0.50658 0.25329 0.000 

Raster angle 2 0.45701 0.22851 0.000 

Inclination angle × support spacing 4 0.00517 0.00129 0.415 

Inclination angle × layer thickness 4 0.00240 0.00060 0.759 

Inclination angle × raster angle 4 0.00102 0.00026 0.938 

support spacing × layer thickness 4 0.00540 0.00135 0.392 

support spacing × raster angle 4 0.00319 0.00080 0.650 

Layer thickness × raster angle 4 0.00099 0.00025 0.940 

Error 48 0.06173 0.00129  

Total 80 2.17959   
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Figure 6. Main effects plot for supporting cases. 

Angle

L.T

R.A

Support

15105 0.60.40.2 90450

0.5

0.3

0.1
0.5

0.3

0.1
0.5

0.3

0.1

Angle

45

15

30

Support

15

5

10

L.T

0.6

0.2

0.4

Interaction Plot (data means) for MSDE

 

Figure 7. Interaction plot for supporting cases. 

Table 12 presents the ANOVA results for non-supporting cases, outlining the statisti-

cal significance of main and interaction effects. Layer thickness and raster angle both ex-

hibited significant effects on MSDE, with p-values smaller than 0.05. The p-value for the 

inclination angle was relatively close to the 0.05 threshold, suggesting a comparatively mod-

erate level of significance. Regarding interactions, all terms had p-values exceeding 0.05. 

Figure 8 depicts how an increase in inclination angle and layer thickness contributed 

to the MSDE increase. For instance, increasing the inclination angle from 60° to 75° led to 

a 20.98% MSDE increase. Similarly, augmenting layer thickness from 0 mm to 0.4 mm and 

from 0.4 mm to 0.6 mm resulted in MSDE increases of 150.93% and 46.71%, respectively. 

The MSDE followed a decreasing trend until a raster angle of 45°, beyond which it in-

creased. Specifically, adjusting the raster angle from 0° to 45° resulted in a 61.33% MSDE 

reduction, followed by an 89.59% MSDE increase upon further adjustment to 90°. Based 

on the main effect analysis, the optimal combination consisted of a 60° inclination angle, 

0.2 mm layer thickness, and a 45° raster angle. Figure 9 highlighted interaction effects, 

though no significant interactions were observed. 
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Table 12. ANOVA table for non-supporting cases. 

 DOF SS MS p 

Inclination angle 1 0.00328 0.00328 0.052 

Layer thickness 2 0.07624 0.03812 0.001 

Raster angle 2 0.04589 0.02295 0.001 

Inclination angle × layer thickness 2 0.00007 0.00004 0.923 

Inclination angle × raster angle 2 0.00041 0.00021 0.658 

Layer thickness × raster angle 4 0.00586 0.00146 0.135 

Error 4 0.00176 0.00044  

Total 17 0.13351   

M
e

a
n

 o
f 

M
S

E

7560

0.20

0.15

0.10

0.05

0.60.40.0

90450

0.20

0.15

0.10

0.05

Angle L.T

R.A

Main Effects Plot (data means) for MSDE_1

 

Figure 8. Main effects plot for non-supporting cases. 
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Figure 9. Interaction plot for non-supporting cases. 

3.5. Machine Learning Regression Model Analysis 

Machine learning regression models were developed to predict dimensional accu-

racy in this study. The calculated MAEs (errors between the measured MSDEs and the 

predicted MSDEs) for GPR and SVM are listed in Table 13. The R2 between input param-

eters—namely, inclination angle, support space, layer thickness, and raster angle—and 

output parameter—namely, MSDE—for GPR and SVM were verified as shown in Figure 
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10. The MAEs were 0.02047 mm for GPR and 0.03476 mm for SVM, and the R2 between 

the four input parameters and one output parameter for GPR and SVM were 0.98 and 0.93, 

respectively. Despite the utilization of a limited number of datapoints (81 datapoints), the 

regression models exhibited R2 values exceeding 90%, indicating high accuracy. Com-

pared to the recently research [29], R2 values for GPR and SVM were higher: 12.99–18.58% 

or 3.23–10.00% higher than their study, respectively. Furthermore, it can be inferred that 

increasing the number of datapoints would lead to higher accuracies in the regression 

models. 

Table 13. Mean absolute errors (MAEs) of the GPR and SVM models. 

Regression Model MAE 

GPR 0.020473 

SVM 0.034762 

 

Figure 10. Prediction versus experimental plot for (a) GPR and (b) SVM regression models. 

3.6. Neural Network Regression Model Analysis 

In this study, the support cases (15°, 30°, and 45° of inclination angles) and non-sup-

port cases (60° and 75° of inclination angles) were trained without overfitting, as shown 

in Figure 11. The loss for the training dataset and the loss for the validation dataset de-

creased with each epoch number, and both loss datasets were converged after the 25th 

and 90th epoch for the MAE for support cases and the MAE for non-support cases, re-

spectively. 
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Figure 11. Training and validation losses for (a) support cases (15°, 30°, and 45° inclination angles) 

and (b) non-support cases (60° and 75° inclination angles). 

The MAEs for the support cases were 0.0056 mm for training and 0.0055 mm for val-

idation. The MAEs for non-support cases were 1.1172 × 10−4 mm for training and 2.1468 × 

10−5 mm for validation. All MAEs are listed in Tables 14 and 15. The R2 between the four 

input parameters for support cases or the three input parameters for non-support cases 

and one output parameter for both support and non-support cases were 0.9995 and 0.9999, 

respectively, as shown in Figure 12. 

 

Figure 12. Prediction versus experimental plot for (a) support cases (15°, 30°, and 45° inclination 

angles) and (b) non-support cases (60° and 75° inclination angles). 

Table 14. Mean absolute errors (MAEs) of training and validation for the support cases. 

Regression Model MAE 

Training 0.0056 

Validation 0.0055 

Table 15. Mean absolute errors (MAEs) of training and validation for the non-support cases. 

Regression Model MAE 

Training 1.1172 × 10−4 

Validation 2.1468 × 10−5 

In Figures 13–16, the effects of input parameters on the MSDE were investigated by 

the ANN models. In the estimation, the MSDEs were shown by varying two input varia-

bles, but other variables were fixed. 
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Figures 13–15 present the MSDEs observed for different support space widths (5 mm, 

10 mm, and 15 mm) and layer thicknesses (0.2 mm, 0.4 mm, and 0.6 mm), considering the 

variations in inclination angle and raster angle. Figure 16, on the other hand, displays the 

MSDEs for cases where no support is used, with corresponding 0.2 mm, 0.4 mm, and 0.6 

mm of layer thicknesses. 

In the case of utilizing support objects, an increase in inclination angle was found to 

result in a decrease in the MSDEs. Additionally, an increase in support space was observed 

to lead to an increase in the MSDEs. However, under the same inclination angle condi-

tions, when the raster angles were set to 45°, the MSDEs exhibited relatively lower values 

compared to other raster angles. In the case of utilizing the non-support object, as the 

inclination angle increased, the MSDEs also increased. Moreover, when the raster angle 

was 45°, the MSDEs were observed to be lower compared to the errors associated with 

other raster angles. 

Increasing the inclination angle with support provides better support for overhang-

ing features and complex geometries, maintaining structural integrity and reducing de-

formations. By mitigating the effects of gravity, the inclination angle with support reduces 

material sagging, warping, or overhangs and enables more controlled and accurate mate-

rial deposition, resulting in reduced MSDEs [30]. A raster angle of 45° provides a more 

balanced deposition pattern during the printing process. This angle allows for a balanced 

distribution of stresses and forces, resulting in improved layer adhesion and reduced dis-

tortion. In contrast, at extreme angles such as 0° or 90°, the deposition pattern may intro-

duce more inherent weaknesses, leading to increased MSDEs and reduced dimensional 

accuracy [28,31,32]. 

 

Figure 13. Predicted mean squared dimensional error (MSDE) with 5 mm of support space with 

layer thickness (a) 0.2 mm, (b) 0.4 mm, and (c) 0.6 mm. 

 

Figure 14. Predicted mean squared dimensional error (MSDE) with 10 mm of support space with 

layer thickness (a) 0.2 mm, (b) 0.4 mm, and (c) 0.6 mm. 
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Figure 15. Predicted mean squared dimensional error (MSDE) with 15 mm of support space with 

layer thickness (a) 0.2 mm, (b) 0.4 mm, and (c) 0.6 mm. 

 

Figure 16. Predicted mean squared dimensional error (MSDE) without support space with layer 

thickness (a) 0.2 mm, (b) 0.4 mm, and (c) 0.6 mm. 

4. Conclusions 

In this study, 3D objects with various support bars and inclination angles were man-

ufactured using the FDM process. The main effect and interaction factor were determined 

for the 3D-printed object quality utilizing a multiple regression model and ANOVA test. 

Prediction models were formulated to forecast printing accuracy through the utilization 

of three distinct machine learning models. 

1. The influences of support spacing, layer thickness, and raster angle were founded to 

be statistically significant by the Pearson and p-value analysis, and all parameters 

(supporting spacing, layer thickness, raster angle, and inclination angle) were as-

sessed to be statistically significant predictors of the dependent variable by multiple 

linear regression model and ANOVA analysis. The optimal combination entailed a 

45° inclination angle, 5 mm of support spacing, 0.2 mm of layer thickness, and a 45° 

raster angle. 

2. Results of the R2 from multiple linear regression, GPR, SVM, and the neural network 

model (from Python) were 76%, 98%, 93%, and 99%, respectively. MAEs for GPR and 

SVM were 0.020 mm and 0.034 mm. MAEs for neural network models from Python 

were 0.0055 mm for supporting cases and 2.1468 x 10−5 mm for non-supporting cases. 

3. The minimum MSDE was obtained at a 45° raster angle and 45° inclination angle 

(when 5 mm of support space with 0.2 mm of layer thickness), according to the neural 

network model.  

The dimensional deformations of molds, which are caused by thermal deformations 

such as warpage and heat distortion and can occur during the rapid tooling process, can 
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be predicted. Using machine learning models, it is possible to predict and compare di-

mensional deformation for various material composites.  
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