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ABSTRACT

Solidification cracking, one of the most critical weld defects in laser welding of Al 6000 alloys, occurs at the final stage of solidification
owing to shrinkage of the weld metal and deteriorates the joint strength and integrity. The filler metal can control the chemical composition
of the weld metal, which mitigates solidification cracking. However, the chemical composition is difficult to control in autogenous laser
welding. Temporal and spatial laser beam modulations have been introduced to control solidification cracking in autogenous laser welding
because weld morphology is one of the factors that influences the initiation and propagation of solidification cracking. Solidification cracks
generate thermal discontinuities and visual flaws on the bead surface. In this study, a high-speed infrared camera and a coaxial charge-
coupled device camera with an auxiliary illumination laser (808 nm) were employed to identify solidification cracking during laser welding.
Deep learning models, developed using two sensor images of a solidified bead, provided location-wise crack formation information. The
multisensor-based convolutional neural network models achieved an impressive accuracy of 99.31% in predicting the crack locations. Thus,
applying deep learning models expands the capability of predicting solidification cracking, including previously undetectable internal cracks.

Key words: Al alloy, laser welding, solidification cracking, deep learning, IR camera, CCD camera
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I. INTRODUCTION

With increasing applications of Al alloys in automotive bodies
to satisfy the increasing demand for lightweight automobiles, Al
6000 alloys are increasingly being employed in various car body
components owing to their excellent strength and formability.1–4

However, fusion welding of Al alloys can lead to solidification
cracking during the final stage of weld pool solidification when the
solid fraction in the mushy zone approaches 1. Crack susceptibility
in Al fusion welding is influenced by the chemical composition of
the weld metal, with the highest sensitivity occurring when the
solute content ranges between 0 and 6 wt. %.5–10 Pure and highly
alloyed Al alloys are less prone to solidification cracking because of
the absence of low-melting-point eutectics in pure Al alloys and

the presence of sufficient eutectic liquid in highly alloyed Al alloys,
which helps prevent cracking during solidification.11 Unfortunately,
Al 6000 alloys have chemical compositions that render them sus-
ceptible to solidification cracking.12

Although filler metal is commonly added to mitigate solidifi-
cation cracking in fusion welding,13 its application is limited to
autogenous laser welding, in which no filler metal is supplied. As
an alternative approach, temporal and spatial laser beam modula-
tions have been proposed. Zigzag weaving has been shown to
reduce solidification crack propagation by reducing the effective
restraint force.14,15 Weld morphology is another factor that influ-
ences crack propagation during laser weave welding. In zigzag
weave laser welding, a curvilinear columnar dendritic
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microstructure develops along the laser trajectory, while a narrow
equiaxed grain zone along the centerline can help prevent solidifi-
cation cracking.16 High-speed beam scanners have enabled the
implementation of various laser welding patterns. Kang et al.17

demonstrated that the width of the center equiaxed grain zone
could be oscillated longitudinally by selecting appropriate combina-
tions of welding speeds and beam patterns, effectively hindering
crack propagation.17 In addition, ring–core multibeam lasers18 and
partial penetration welding19 have been found to reduce the solidi-
fication cracking susceptibility in the laser welding of Al 6000
alloys.

Despite progress in crack mitigation research, solidification
cracking in Al 6000 alloys has not been completely eliminated,
necessitating the prediction and inspection of cracks to ensure weld
quality. Surface solidification cracks are easily observable, but detect-
ing internal solidification cracks requires special tests such as x-ray,
ultrasonic, or destructive tests. Unfortunately, these tests are time-
consuming, expensive, and require specialized equipment. Therefore,
there is a need for nondestructive, easy-to-apply, and inline crack
prediction and inspection technologies in the automotive industry to
enhance safety and quality while reducing cost and time.

Recently, the integration of deep learning models into welding
research has gained attention, with various studies published on
the real-time prediction of welding phenomena. Convolutional
neural networks (CNNs) have demonstrated the ability to extract
characteristic features from images and signals, resulting in an
increasing number of publications utilizing CNN models with
camera images and time-series signals as inputs for real-time mod-
eling.20,21 In laser welding, high-speed cameras,22–24 charge-
coupled device (CCD)/complementary metal oxide semiconductor
cameras,25,26 photodiodes,22,24,27 spectrometers,22,26 infrared (IR)
cameras,28 and optical coherence tomography sensors29,30 have
been employed as input sensors for deep learning models to
predict the weld quality, porosity, penetration depth, and spatter
generation. However, even in deep learning modeling, solidification
cracks have been identified using weld surfaces31 and x-ray images
rather32 than real-time images or signals.

The morphology of solidified welds is governed by the
thermal history during the solidification. Previous studies have
demonstrated that image sensors equipped with auxiliary illumina-
tion can distinguish weld pool boundaries from solidified welds,
but are unable to capture the temperature profile.
High-temperature IR cameras can digitize the temperature profile
near the solidification temperature, and affordable IR cameras with
sampling rates exceeding 1 kHz are now available. In this study,
deep learning models were employed to estimate the occurrence of
solidification cracking using images captured by CCD and IR
cameras as inputs. The crack locations were identified by analyzing
the x-ray images, which revealed both internal and surface cracks.
Deep learning models have been developed and evaluated for indi-
vidual sensors and multisensor setups.

II. EXPERIMENTAL SETUP

The basic materials used in the experiments were an Al 6014
alloy with a thickness of 1.0 mm and an Al 6016 alloy with a thick-
ness of 1.8 mm, the chemical compositions of which are listed in

Table I. The specimens were cut and machined into sheets with
dimensions of 100 and 30 mm in length and width, respectively.
An Al 6014 sheet was fully overlapped with an Al 6016 sheet for
welding.

A Yb:YAG disk laser (TruDisk 3002, Trumpf Laser GmbH,
Schramberg, Germany) with a wavelength of 1030 nm was
employed as a laser beam generation source and delivered through
an optical fiber with a diameter of 0.2 mm and a focusing optic
with a focal distance of 560 mm. The laser beam was focused on
the top surface of the specimens with a diameter of 0.54 mm. Two
image sensors were employed to gather the inputs for the deep
learning models [Fig. 1(a)]. A CCD camera (UI-3140CP Rev. 2,
iDS, Obersulm, Germany) was coaxially installed on the focusing
optics, and the resolution and sampling rate were 864 × 320 pixels
and 250 fps, respectively. An illumination laser was used to
monitor the laser keyhole, weld pool, and solidified bead shape
simultaneously. The wavelength and power of the illuminating laser
were 808 nm and 30W, respectively. A bandpass filter with an
808 ± 5 nm band was attached to the front of the CCD camera. An
IR camera (TACHYON 16k+, NIT, Madrid, Spain) was set up
off-axis with a resolution and sampling rate of 128 × 128 pixels and
500 fps, respectively.

A welding trial was conducted with a weld length of 80 mm at
the center of the specimens using a one-axis traveling system
[Fig. 1(b)]. Both sides of the specimens were fixed at a constraint
length of 10 mm, which was consistently applied in all the welding
trials. The laser power ranged from 2.6 to 3.0 kW in increments of
0.1 kW, while the travel speed ranged from 1.0 to 3.0 m/min in
increments of 0.5 m/min (Table II). A total of 25 conditions were
implemented to cover all combinations.

After welding, the specimens underwent x-ray testing for
inspection (Fig. 2). The digitized x-ray test results had a resolution
of 1125 × 420 pixels. Gray levels within a mask of 80 pixels in the
width direction and 1 pixel in the length direction at the longitudi-
nal centerline were examined along the weld line. When the sixth
brightest pixel had a gray level higher than 170, the point was
coded as 1 (crack); otherwise, it was coded as 0 (noncrack).

Welded specimens were prepared to observe the microstruc-
ture along the plane normal to the sheet surface. The samples were
polished and etched in a solution containing 100 ml chilled water,
2.5 ml HCl, 1.5 ml HNO3, and 1 ml HF. The microstructure was
analyzed using optical microscopy (CX40M, Sunny Korea, Busan,
Korea) and field-emission scanning electron microscopy (FE-SEM,
JSM-IT800, JEOL, Tokyo, Japan). The electron backscatter diffrac-
tion (EBSD, Symmetry S3, Oxford Instruments, Abingdon, UK)
data were acquired using a FE-SEM system. Before EBSD analysis,
the coupons were mechanically polished using colloidal silica to
avoid etching the edges of the cracks. A high-angle grain boundary
(HAGB) is defined as a boundary misorientation greater than 15°,

TABLE I. Chemical composition of materials (wt. %).

Alloy Al Si Fe Cu Mn Mg Cr Ti

Al 6014 98.27 0.60 0.23 0.13 0.08 0.65 0.01 0.03
Al 6016 98.63 1.00 0.19 0.03 0.07 0.40 0.01 0.03
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and the structure is defined as a feature of grains enclosed by the
HAGB.

III. MODELS AND DATA PREPARATION

Three CNN models were constructed to predict the crack
occurrence using the CCD and IR camera images (Fig. 3). In the

multi-input model, single-input models using CCD and IR camera
images were combined, and the structure was similar to that of the
single-input models. Features were extracted through two CNN
blocks: convolution, batch normalization, and max pooling layers,
and crack occurrence was classified into two dense (fully con-
nected) layers. The activation function was a rectified linear unit
function, except for the output node, whose activation function was
a sigmoid function.

The two IR images were averaged, and the IR and CCD
images were synchronized at a sampling rate of 250 Hz. Totally,
12 500 data points were prepared regardless of the welding

FIG. 3. Deep learning model structure: (a) IR image, (b) CCD image, and
(c) multisensor.

FIG. 2. X-ray image processing to define the hot crack location.

TABLE II. Applied welding parameters.

Welding parameter (unit) Value (levels)

Laser power (kW) 2.6–3.0 (5)
Welding speed (m/min) 1.0–3.0 (5)
Focal position (mm) 0 (1)

FIG. 1. Experimental setup configuration of (a) data acquisition system and
(b) jig fixture.

Journal of
Laser Applications

ARTICLE pubs.aip.org/lia/jla

J. Laser Appl. 35, 042019 (2023); doi: 10.2351/7.0001112 35, 042019-3

Published under an exclusive license by Laser Institute of America

 01 O
ctober 2023 07:38:03

https://pubs.aip.org/lia/jla


conditions. The data points were divided into training, validation,
and test data points at a ratio of 70:15:15.

During training, the binary cross-entropy function was chosen
as the loss function, and the Adam optimizer was applied using the
default parameters proposed by Kingma and Ba,33 namely, learning
rate of 10−3, β1 = 0.9, β2 = 0.999, and ε = 10−8. Here, β1 and β2 are
the exponential decay rates for the first- and second-moment esti-
mates, respectively, and ε is a low-valued constant that prevents
division by zero. The models were trained for 300 epochs in mini-
batches of 16 samples.

IV. RESULTS

A. Welding phenomena and cracking behavior

Analyzing the temperature field surrounding the welds and
monitoring the movement of the solid–liquid interface can help
predict the locations of hot cracks. The surrounding stress field
(restraint), cooling rate, and weld morphology are a few factors that
affect hot cracking. The cooling rate (dT/dt) was calculated by mul-
tiplying the temperature gradient (G, dT/dl) by the solidification
rate (R, dl/dt), where T, t, and l denote the temperature, time, and
location, respectively. The weld morphology was determined by the
ratio of G to R. By examining the temperature field obtained
through the IR camera and the molten pool images captured by the
CCD sensor, it was possible to estimate the behavior of hot crack-
ing. Compared to the IR camera, the CCD sensor used in the
experiment provided a higher resolution for observing the motion
of the liquidus and identifying surface roughness and surface
cracks.

IR and CCD images were acquired during the laser welding
and synchronized with the captured bead appearance and x-ray
photographs. The heat input per unit length varied between 52 and
180 J/mm. The data points were categorized into four groups based
on the crack observations (Table III), and representative images are
presented in Fig. 4.

As the heat input increased, the CCD and IR images revealed
expansion of the molten pool. When the crack width was relatively
small [Fig. 4(b)], the crack was only visible in the x-ray image and
not in the bead or CCD images. As the crack width increased, it
became visible in the bead appearance and x-ray image [Fig. 4(c)].
With further widening, cracks could also be observed in the CCD
images [Fig. 4(d)].

The crack and noncrack locations were counted at intervals
of 10 J/mm as the heat input. For example, the crack count at
50 J/mm represents the number of crack locations observed when

TABLE III. Data groups according to crack detection.

Cracking detection by

CCD Appearance X ray

Group 1 No No No
Group 2 No No Yes
Group 3 No Yes Yes
Group 4 Yes Yes Yes

FIG. 4. Representative data set based on group with various heat input: (a) group 1:
112 J/mm, (b) group 2: 116 J/mm, (c) group 3: 90 J/mm, and (d) group 4: 120 J/mm.
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the heat input ranges from 45 to 55 J/mm. Because the number of
data points within each range varied depending on the heat input,
the relative crack count is also included in Fig. 5. Increasing the
heat input per unit length led to an increase in the relative crack

count. This can be attributed to the higher thermal deformation
during cooling and the increased restraint force exerted on the
welds as the heat input increased.

The crack behavior and microstructural evolution in relation
to the heat input are shown in Fig. 6. The central region of the
welds predominantly exhibits an equiaxed structure, whereas a
columnar dendritic structure forms near the fusion line. Under all
the conditions, the cracks propagated along the grain boundaries of
the equiaxed structure. However, the crack path that was initially
curvilinear at the lowest heat input [Fig. 6(a)] became straighter as
the heat input increased [Figs. 6(b) and 6(c)]. The grain size
increased proportionally with heat input, as shown in Figs. 6 and 7.
For a low heat input of 89.1 J/mm, the grain size distribution exhib-
ited the highest frequency around 100 μm, whereas it shifted to
approximately 170 and 210 μm for the intermediate (120.0 J/mm)
and high (156.0 J/mm) heat input cases, respectively. The curvilin-
ear crack path observed at lower heat inputs can be attributed to
the smaller grain size and, consequently, the shorter crack propaga-
tion distance.

B. Model training and test results

The training process for the CCD image and multisensor
models successfully avoided overfitting and reached saturation
within 300 epochs. However, the IR image model exhibited a slight

FIG. 5. Crack count in the data set according to the heat input.

FIG. 6. Magnified weld bead surfaces and their EBSD images.
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overfitting after only ten epochs (Fig. 8). This overfitting tendency
can be attributed to the lower resolution of the IR image and the
small object area within the image. To mitigate overfitting, it is rec-
ommended to increase the resolution of the IR image or consider
image magnification techniques to provide a larger and more
detailed representation of the objects in the image.

The three models exhibited excellent performance in predict-
ing crack locations, as evidenced by the confusion matrix shown in
Fig. 9. The accuracies of the test models were 96.48%, 98.77%, and
99.31% for the IR, CCD, and multisensor models, respectively
(Table IV). The multisensor utilizing both sensor feature extrac-
tions exhibited the best performance. Among the 1875 data points,
incorrect prediction was carried out at only 13 data points.
Moreover, cracking is a locally continuous phenomenon, so tempo-
ral averaging in the model prediction output for successive images
can enhance the accuracy of the prediction models. As shown in
Fig. 10, an inaccurate prediction, that is, a residual in the modeling,
was distributed over the heat input, and a slight concentration was
found at 120 J/mm in the IR image model. Inaccurate predictions
can be classified into two types: false cracks and false noncracks.
False cracks occur when a crack is predicted despite the x-ray
image showing no actual crack. Conversely, false noncracks happen
if a noncrack is predicted when an actual crack is observed in the
x-ray image. Tables V and VI list the number of inaccurate predic-
tions obtained with the CCD image and multisensory models,
respectively, categorized according to the groups outlined in
Table III. As indicated, group IV did not result in any inaccurate
predictions, group I contained only false cracks, and groups II and
III included solely false noncracks. Notably, the number of inaccu-
rate predictions in group III significantly decreased from the CCD
to the multisensory model.

FIG. 7. Grain size distribution in the central region of welds according to heat
input.

FIG. 8. Training and validation losses for (a) the IR image model, (b) the CCD
image model, and (c) the multisensor model.
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V. DISCUSSION

The present study successfully developed deep learning
models capable of predicting crack locations with remarkable preci-
sion, reaching accuracies of up to 99.31% during model testing.
The training data set used comprised 12 500 CCD and IR images
sampled at 250 Hz.

Previous research on machine learning models for laser
welding has provided valuable insights into classifying and predict-
ing welding characteristics. For example, a combination of photodi-
odes, spectrometers, and high-speed cameras effectively detected
geometric weld defects.22 Other investigations utilized either near

IR and midwave IR cameras,28 or optical coherence tomogra-
phy29,30 to identify geometric defects. The penetration mode for
butt joints was predicted through coaxial high-speed imaging tech-
niques,23 whereas that for Al/Cu overlap joints has been success-
fully estimated using photodiodes27 or a combination of
photodiodes and high-speed cameras.24 Depth estimation was also
accomplished through a combination of spectrometer signals and
CCD images.26

Solidification cracking is influenced by various metallurgical
factors, including the stress induced by constrained thermal shrink-
age. Camera images can digitize and detect essential geometric

FIG. 9. Confusion matrix obtained with the (a) IR image, (b) CCD image, and (c) multisensor models.
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features such as welding pools and keyhole shapes. Deep learning
models based on camera images can also be used to detect con-
cealed geometric features such as penetration modes and depth.
Zhang et al.25 expanded on this, noting that weld pool images
capture not only the geometric features of weld pools but also the
associated flow patterns, rendering them valuable for predicting
porosity formation. This study demonstrates the exceptional effi-
cacy of both the CCD image and multisensor models in identifying
cracks, which are among the metallurgical features of interest.

Hot cracking occurs when the balance between material resis-
tance and cracking forces is disrupted. This force imbalance
emerges during welding processes involving heating and shrinkage
and is influenced by the amount of heat input and surrounding
restraint. The molten pool expands during heating and contracts
during cooling. Therefore, analyzing the relative movement at the
tail of the weld pool with respect to the static environment can
provide insight into crack susceptibility.

Observations of temperature and deformation distribution in
the crack-sensitive region, specifically the tail of the molten pool,
offer insight into predicting hot cracks. According to Rappaz’s sol-
idification crack criterion,34 the thermomechanical path of an alloy,
ε(T), must not intersect the U-shaped ductile curve. The variation
of distortion with respect to temperature, ∂ε/∂T = ∂ε/∂t × ∂t/∂T, has
been used as a hot cracking indicator. This implies that the thermal
history (∂T/∂t) and thermal distortion (∂ε/∂t) occurring near the
tail of the molten pool during solidification, as obtained in this
study, play a significant role in predicting hot cracks.

Three crack types were identified (Table III). Group II cracks
were located below the weld surface and required x-ray testing,
instead of CCD imaging or visual inspection, for detection. Groups
III and IV comprised surface cracks. Group IV cracks were visible
within the CCD image’s field of view, and both the developed CCD
and multisensory models accurately detected their formation, as
evidenced by Tables V and VI. Group III cracks were beyond the
CCD camera’s field of view and were not apparent in CCD images.
However, both the CCD and multisensory models successfully pre-
dicted these group III cracks. The addition of infrared (IR) images
to the multisensor model, alongside CCD images, contributed to
improving the model’s accuracy. As previously explained, IR
images encapsulate thermal history, enhancing the performance of
the multisensor model in cases like group III where cracks are not
directly visible in CCD images. This resulted in reducing false non-
crack cases from 9 to 2, compared to the CCD image model.

Among the deep learning models considered in this study, the
IR image model demonstrated relatively lower accuracy. As shown
in Fig. 4, because of their lower magnification, IR images display
smaller weld pool sizes than CCD images. Therefore, by increasing
IR image magnification or resolution, the accuracy of both the IR
image and multisensory models could be enhanced.

TABLE IV. Prediction accuracy of different models.

Model

Accuracy (%)

Training data Validation data Test data

IR image 99.94 98.03 96.48
CCD image 99.94 98.77 98.77
Multisensor 100 99.73 99.31

TABLE V. Residual analysis per data group using the CCD image model.

Group I Group II Group III Group IV

False noncracks 0 6 9 0
False cracks 8 0 0 0

FIG. 10. Residual analysis based on crack count: (a) the IR camera input
model, (b) the CCD camera input model, and (c) the multisensor input model.
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VI. CONCLUSION

Deep learning models were developed to identify the locations
of solidification cracks in the laser overlap welding of Al 6000
alloys. IR and CCD camera images were selected as inputs at a
sampling rate of 250 Hz, and the crack location identified from the
x-ray image was chosen as the output. The following conclusions
were drawn using CNN-based deep learning models.

(1) The developed deep learning model could predict the cracking
location with excellent accuracy, and the best prediction with
the multisensor input model had an accuracy of 99.31%.

(2) Solidification cracking occurred because of intergranular crack-
ing along the equiaxed grains in the center of the welds. The
multisensor was composed of a low-resolution IR camera that
monitored the temperature gradient and a high-resolution
CCD camera that estimated solidification.

(3) The accuracy of the prediction models could be enhanced
using higher-resolution sensors and magnifying IR camera
images.

This study successfully demonstrated that deep learning
models can detect solidification cracking, including internal cracks,
using visual and IR camera images.
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