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Abstract

During machine learning algorithms, deep learning refers to a neural network containing multiple hidden layers.
Welding research based upon deep learning has been increasing due to advances in algorithms and computer
hardwares. Among the deep learning algorithms, the convolutional neural network (CNN) has recently received the
spotlight for performing classification or regression based on image input. CNNs enables end-to-end learning with-
out feature extraction and in-situ estimation of the process outputs. In this paper, 18 recent papers were reviewed to
investigate how to apply CNN models to welding. The papers was classified into 5 groups: four for supervised
learning models and one for unsupervised learning models. The classification of supervised learning groups was
based on the application of transfer learning and data augmentation. For each paper, the structure and performance
of its CNN model were described, and also its application in welding was explained.
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1. Introduction

Deep learning is one of the machine learning techni-
ques, a kind of Artificial Intelligence (Al), with increas-
ing applications to a wide range of sectors. Machine
learning is not based on explicit rules, it learns rules us-
ing datasets, and is categorized into supervised learn-
ing, unsupervised learning, and reinforcement learning
according to the types of training datasets. Supervised
learning uses inputs and correct outputs as training da-
tasets and it is applied to classification and regression
problems").

Artificial Neural Network (ANN), a type of machine
learning, was developed by mimicking human neural
networks and consists of an input layer, hidden layers,
and an output layer. ANN is further categorized into a
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shallow neural network (SNN) where there is one hid-
den layer and a deep neural network (DNN) where there
are two or more hidden layers. When machine learning
is performed using DNN, it is called deep learning.

As for research that applies ANN to welding, since the
error back-propagation algorithm® was introduced in the
mid-1980s, ANN has been actively applied to a number
of welding processes. The examples of application includes
prediction of weld quality from control parameters®?,
suggestion of appropriate control welding parameters
from the welding of the desired weld attributes®, profile
extraction from laser vision sensing image®, and quality
and seam tracking using vision sensors”. However,
there were some problems in expanded application of
neural network models at the time. First, the sigmoid
function or RBF (Radial Basis Function) function was
mainly used as an activation function of neural networks,
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and learning of weights far from the output layers was
difficult in training of DNN through the back-propagation
algorithm. In addition, when images or time series signals
were used, learning was performed through feature ex-
traction rather than raw signals without feature ex-
traction, and models that predict outputs from scalar
variables such as control parameters were mainly de-
veloped, and thus application of the trained model to
another production system was intrinsically difficult.
When only the control parameters are used as the input
parameters of the model, several environmental disturbances
(e.g. humidity, temperature, electric power instability)
cannot be considered, and it was difficult to set the
same system inputs even by setting the same control
parameters in other systems.

In recent years, ReLu (Rectified Linear unit) has been
proposed as an activation function to enable training of
DNN. With the introduction of Convolutional Neural
Networks (CNNs)®, also known as convnets, which are
mainly used for image recognition, and Recurrent
Neural Network (RNN)*'? for use in models using
time-series variables, innovative development in deep
learning technologies has been achieved including end-
to-end learning.

Machine learning has been applied to various welding
processes and the examples include the use of deep
learning and reinforcement learning in the laser welding
control'”, quality prediction through deep learning in
arc welding'?, and quality classification through SVM
(Supported Vector Machine), a machine learning algo-
rithim '*'¥.

In this paper, 18 recently published papers on CNN-
based welding research are reviewed. As shown in Fig.
1, these papers were divided into 5 groups based on su-
pervised/unsupervised learning, use of transfer learning,
and application of data augmentation in data preprocessing.

2. CNN Structure and Learning Methods

CNN is an artificial neural network that uses con-
volution operations, and CNN models has shown ex-
cellent performance in image recognition because the
feature patterns of the images can be extracted by train-
ing through convolutional filters. In addition, manual ex-
traction of features is not necessary since features are
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automatically learned, and models can be constructed
based on pre-trained networks. With these advantages,
research of applying CNNs for deep learning using im-
ages has shown a rapid increase in recent years.

2.1 Basic structure

CNN is composed of convolutional layers, pooling
layers, and fully connected layers. In the convolutional
layer, inputs within a kernel are connected by specific
weights, and a feature map is constructed by information
representing each kernel area and passed to the next
layer. The convolution operation is performed by slid-
ing the kernel window over the input data at a fixed
stride. The output of the convolutional layer can be
passed to the next layer as it is, but in most cases, pool-
ing is performed, one of the down sampling operation,
to prevent over-fitting and create features that are high-
ly noise-resistant. Typical pooling methods are max
pooling and mean pooling, in which the maximum and
mean values are output within the specified kernel win-
dow, respectively. The fully connected layer is a layer
in which nodes of the previous layer and those of the
next layer are all connected in the same way as a tradi-
tional ANN. In the CNN model, the successive repeti-
tion of the convolutional layer and the pooling layer en-
ables inclusion of local features in the image and also
represents the global features and these are passed as
the input of the fully connected layer, and the fully con-
nected layer produces the final output.

2.2 Key techniques used in the reviewed papers

The techniques adopted for modeling and training are
briefly introduced as follows, and more details can be

found in References'®.

2.2.1 Activation function

The activation function converts the input signal of a
node in an ANN to an output signal, and the identity
function, sigmoid, Tanh, ReLu, and softmax function
are used as the activation function. In general, ANN
performs learning of complex nonlinear phenomena by
adopting a nonlinear function as an activation function.
Among them, the sigmoid function is useful for con-
verting all values into probabilities, and generates out-
put values between 0 or 1, which can be used for binary
classification. The Tanh function has a smooth shape
like the sigmoid function, and has the advantage of be-
ing able to generate negative values because the output
values range between -1 and 1 depending on the input
value. The sigmoid function and the tanh function are
disadvantageous for use in the learning of DNN be-
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cause it is possible that the gradient of the function van-
ishes by saturation. However, the ReLU function out-
puts 0 when the input value is negative, and outputs the
input value as it is when the input is 0 or positive. The
softmax function used in the classification problem
converts the input values between 0 and 1 and the sum
of the output values is always 1. The softmax function
increases the differences in the portions of the input
values, making the portion of the largest value even
larger and the portions of other values even smaller,
and is used as the activation function of the last node
for the classification neural network.

2.2.2 Transfer learning

Transfer learning performs learning by using models
that has been pre-trained with large-scale data such as
VGG, GooglLeNet, and MobileNet, rather than learning
a complex CNN structure from scratch in the design of
an image classification model using CNN and it allows
a accurate model in a relatively time-efficient manner.
Transfer learning adopts model optimization through
fine-tuning. The fine-tuning strategies can be divided
into three methods: retraining the entire model, fine-
turning only the parameters of the fully connected (FC)
layers, and fine-tuning some convolutional layers and
all fully connected layers.

2.2.3 Data augmentation
In deep learning, the more number of training datasets
are available, improved accuracy can be achieved.

Insufficient number of training datasets leads to over-
fitting and ensuring a large number of training datasets
is important in the performance. When CNN uses im-
ages as input data and the number of training datasets is
insufficient, data augmentation can be used to address
the problem of insufficient input. Data augmentation is a
method of adding artificially processed images to the
given training datasets through effects such as flipping,
rotation, and changing brightness to the input images.
In this paper, for convenience of presentation, the meth-
od of using original data without data augmentation is
indicated as learning using the original data.

3. Supervised learning with training from scratch

3.1 Original data utilization

Z. Guo et al.'” proposed a model for classifying normal
and defective welds by applying CNN to electric resist-
ance welding in the line pipe manufacturing process,
and achieved an accuracy of 99.01%. The cross-section
images of the welds were used as input and the sigmoid
function was used in the output layer to classify normal
and defective welds. The number of hidden layers of
the CNN was 5, 7, and 13, and the difference in accu-
racy according to the network depth was examined.
With increasing network depth, the average time per
epoch was 261.68 s, 266.24 s, and 267.26 s in case of 5,
7, and 13 layers, respectively, indicating no significant
difference but the error rates were 7.89%, 4.93%, and

Table 1 Summary of research using original data and training from scratch

Process Input Output Network No. of dataset | Ref. No
Electric 256x256 (px) image | < assification CNN-FCN 11026 (TR*)
Resistance from cross-sections - Weld quality 13 HL*** 304 (TE**) 16
Welding (Good/Defect)
Classification
. 320%240 (px) image - Weld quality CNN-FCN
Arc Welding from weld surfaces (Good, Porosity, Undercut, 5 HL 120 17
Spatter)
13: iitffasti‘g::ls(’f Classification 7500 (TR)
. A ) . |- Weld quality CNN-FCN 5000 (TE)
Laser Welding | from photo diodes, im- (Good, Blowout, 7 HL from 25 18
age sensor, and spec- ; .
Humping, Undercut) welding runs
trometer
Gas Tungsten | 400x487 (px) in-siu | ossification 12 models 26666 (TR)
Arc Welding | weld pool image - Weld quality (6 CNNs & 6588 (TE) 20
£ P & @, 4, 6 classes) 6 FCNs)
Regression
. . - Strength
Res1s?ance Spot| 128%128 (px) image - Nugeet diameter CNN-FCN 90 21
Welding from weld surfaces ; . 11 HL
Classification
- Fracture mode, Expulsion
121x121 (px) in-situ Classification 10 Models (6 CNNs, 10,000 (TR)
Laser Welding |image of weld pool in-|- Penetration {HOG, LBP, BOF, or 1 060 (TE) 22
cluding keyhole (2, 3, 4 classes) SAE} + SVM)

* TR: For training; ** TE: For test; *** HL: Hidden Layer
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0.99%, showing improved accuracy. It was reported
that superior accuracy results were obtained compared
to the error rate of 2.3% at human inspection.

A. Kjumaidi et al.'” proposed a CNN-based defect de-
tection model using photo images of arc welding bead
surface as input, and using only 3 hidden CNN layers
and 2 hidden FC layer, test accuracy of 95.83% was
achieved for 4-class classification of defects (good, po-
rosity, undercut, and spatter).

Y. Zhang et al.'"® performed in-situ measurement of
welding signals using multi-sensor technology, and a
CNN-based defect detection model was proposed based
on the input signals. The multi-sensor system comprised
a photodiode, a spectrometer, and two high-speed
cameras. The collected photodiode signals were decomposed
for each frequency by the Wavelet Packet Decomposition
(WPD) method to obtain 320 feature signals. In addition,
the spectrometer signals were collected by dividing the
wavelength range between 400 nm and 900 nm into 25
bands. The information on the size and location of the
keyholes was collected with No. 1 camera with 976 nm
laser light and the bandpass filter applied, and the spat-
ter and plume related information was collected from
No. 2 camera with a wavelength range of 320 nm-750 nm.
After collecting a total of 351 signals from various sen-
sors at a frequency of 500 Hz, the rest were filled with
value 1 to form 400 input nodes. For verification on the
accuracy of the CNN model, the results were compared
with the fully connected network (FCN) model' result
with same input nodes. In the comparison, the mean er-
ror of the FCN model was 9.65% and the mean error of
the CNN model was 4.7%, indicating that the CNN
model accuracy was superior to that of FCN model. For
generalization of the proposed CNN model, the ver-
ification of the model was performed by experimenting
under four welding conditions. As a result of CNN
model classification, error rates of 1.73%, 8.0%,
11.2%, and 8.75% were obtained in each defect class
(good, blowout, humping, undercut). When the cases of
classification error were analyzed, there were cases
where the blowout defect and the undercut defect were
confused in detection, or the humping defect and good
welds were confused.

D. Bacioiu et al.* constructed various DNN models
for welding defects classification in GTA welding of
aluminum 5083 alloy and compared the model per-
formances. In a total of 60 welding experiments, the
in-situ molten pool images were used as input data, and
the 6 CNN models and 6 FCN models were developed
with defect classifications of 2-class (good, defective),
4-class (good, melt-through, contamination, lack of fu-
sion) and 6-class (good, melt-through, contamination,

lack of fusion, misalignment, lack of penetration). Then,
the performance was compared according to input im-
age resolution, model depth, and learning rate. In the
evaluation of the input image resolution, the comparison
of original data images of 800x974 pixels with sampled
images at 400x487 and 25x30 pixels confirmed that in
the 6-class classification the CNN model showed high-
er sensitivity to the final classification accuracy than
the FCN model. In all models, the accuracy improved
with increasing model depth, and learning did not con-
verge at a learning rate of 10™ or below. In all evalua-
tions, CNN models showed higher accuracy than FCN
models. S. Choi et al.*” presented a CNN model that
predicts weld quality (tensile shear strength, nugget di-
ameter, fracture mode of welds, expulsion occurrence)
through the surface images of resistance spot welds for
automobile steel sheets with a tensile strength of 980
MPa. The surface indentation and heat trace correlate
with the weld quality, and thus the tensile shear strength,
nugget diameter, fracture mode of welds, and expulsion
occurrence were predicted with the accuracy of 98.6%,
98.8%, 100%, and 100%, respectively, through the CNN
model. The generality of the model was verified through
a test using data not included in the training, and the
verification result confirmed that the prediction accu-
racy of the tensile shear strength and nugget diameter
was 97.8% and 97.4%, respectively

Z. Zhang et al.*? used a CNN model to determine the
penetration state of tailor-rolled blank (TRB) in-situ la-
ser welding. The applied penetration state classification
was 2-class (incomplete penetration, complete penetration),
3-class (incomplete penetration, desirable-complete
penetration, overpenetration), and 4-class (incomplete
penetration, desirable penetration, complete penetration,
overpenetration). Six CNN models with different number
of kernels and convolutional layers were trained and
evaluated in comparison. It was confirmed that the in-
creased complexity of the model did not necessarily
lead to improved accuracy, and the optimal CNN model
was determined considering the model complexity in
addition to accuracy. Moreover, apart from the model
complexity, the image sampling frequency (100 fps,
300 fps, 3000 fps) of the input images that can affect
the latency of model was varied to conduct experiments
in comparison. Since there was no significant difference
in accuracy among models with difference sampling
frequencies, 100 fps was selected with the lowest
latency. To verify the applicability of the CNN model,
it was compared with other methods [(HOG, LBP, Bag
of features (BOF), or SAE)*SVM]. As a result of the
verification, the CNN model in 2-class classification
showed the highest prediction accuracy, and in the case
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of 3-class classification, the prediction accuracy of the
CNN model was 99%, 93.8%, and 96.5%, respectively,
indicating higher performance than other models.

When the penetration state was classified into 4 classes,
the accuracy of each model was relatively low, but the
stability in the accuracy of the CNN model was high.

3.2 Data augmentation

W. Hou et al.” investigated a defect classification model
(good, incomplete penetration, pore, slag inclusion,
crack) from X-ray images of various welds in an open
database GDXray. First, 3503 of 32x32-pixel images
were extracted from 88 X-ray images by subsampling.
Since the distribution of each type of defect is unbalanced,
resampling was performed using ROS (Random Over
Sampling), RUS (Random UnderSampling), and SMOTE
(Synthetic Minority Oversampling TEchnique) methods.
The RUS method is the simplest approach that ran-
domly deletes samples from the majority class to bal-
ance the class distribution and the ROS method dupli-
cates samples selected from the minority class and adds
to the original dataset to balance the class distribution.
In addition, the SMOTE method is a resampling meth-
od in which Euclidean distance is calculated to ran-
domly find k-nearest neighbors to create new artificial
samples. For classification models, traditional methods
of Haralick texture features and HOG (Histograms of
Oriented Gradients) were used as well as the deep learn-
ing method SSAE (Stacked Sparse Auto-Encoders), and
two CNN models with different depths were used. For
visual comparison on the results of extracted features
through each model, each part was visualized into a 2D
map using the t-SNE method to compare the accuracy.

From the comparison, it was confirmed that the t-SNE
map of the original images was disorderly, and the
t-SNE map of the models with Haralick technique and
HOG method also showed poor data classification
performance. Both SSAE and CNN models showed
better performance of classification in the t-SNE map.
Between the two CNN models, the one with larger depth
showed a better classification performance. Among them,
the classification of samples without defects and sam-
ples with pores showed the best performance, and crack
defects were the most difficult for classification. In the
case of the ROS datasets, the mean accuracy of the de-
fect classification for Haralick, HOG, SSAE, CNNI,
and CNN2 was 60.9%, 81.6%, 91.4%, 94.7%, and
96.3%, respectively, in the case of the RUS datasets,
the accuracy values were 60.7%, 67.5%, and 87.3. %,
76.6%, 79.9%, and for SMOTE datasets, the values
were 63.1%, 82.2%, 90.5%, 94.4%, and 97.2%,
respectively. In conclusion, they reported that the deep
learning method showed better feature extraction per-
formance than the traditional model, and that with
SMOTE method, the problem of accuracy reduction
from data imbalance can be resolved.

J. Park et al.** proposed two-step CNN models for de-
fect detection in engine transmission welds. In the first
CNN model, the representation of collected images of
the circular welding area of the engine transmission
was converted from Polar coordinates to Cartesian co-
ordinates and the center point was predicted. Assuming
that the weld width was fixed, the background except
the welds was removed, thereby optimizing the input
data to the second defect detection CNN model.
Compared with Hough circle, a traditional method, the
two-step models have showed superior performance

Table 2 Summary of research using data augmentation and training from scratch

Process Input Output Network Data augmentation Ref. No
Xora 32x32 (px) X-ray Classification ?HI;/TI;)S:E Subsampling
Inspe}:/ction images from - Weld quality HOG. SS A’E ROS**, RUS*** 23
-~ ) ) %
GDXray-Weld (2, 5 classes) 2 CNNs) SMOTE*4
80x256 (px)'for Regression . 6 Models . .
. center detection - Center point Rotation Translation
Transmission . . (HOG+SVM, . .
32x352 (px) for Classification Scaling Brightness 24
Welds . . . LBP+SVM, . .
defect inspection - Weld quality 4 CNNs) Adj. Contrast Adj.
from weld surfaces (Good, NG)
Flux Cored | 150x125 (px) in-situ | Rgression CNN-FCN Horizontal flip
. . - 8 molten Translation 25
Arc Welding | image of weld pool 10 HL* .
pool features Scaling
L Classification
Gas Tungsten ;ﬁgxéfoogpxilén_sé?l - Weld quality CNN-FCN Noise addition 2%
Arc Weldng imag p (Under-penetration, Full 10 HL Rotation
in three-way -
penetration, Burn through)

* HL: Hidden Layer; ** ROS: Random Over-Sampling; *** RUS: Random Under-Sampling;
*4 SMOTE: Synthetic Minority Oversampling TEchnique
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under dark lighting environments and with blurred
images. Since there are not many defect data images in
the training datasets, image transformation (rotation,
translation, scaling) and image distortion (brightness
and contrast adjustment) were performed to improve
performance. In the second defect detection CNN mod-
el, the mini-batch gradient descent method can lead to
biased learning due to data imbalance, class-specific
batch sampling method with a set ratio of OK and NG
images of each batch was used. For the defect detection
model, the performance was comparatively evaluated
between HOG+SVM, LBP (Local Binary Pattern)+SVM
and four CNN models, and all CNN based models
showed outstanding performances.

For automation of Flux Cored Arc (FCA) Welding, T.
Ashida et al.* used a CNN model to extract features of
molten pool and calculated the distance between the
leading of the molten pool and arc center and the width
of the pool to investigate a feedback control system to
form back bead. Data augmentation was performed us-
ing horizontal flip, translation, and scaling to increase
the number of datasets from 2,400 to 12,000. When
comparing between the proposed CNN model and the
conventional feature-extraction image processing algo-
rithms, the mean prediction error of the leading end po-
sition of the molten pool was reduced by 0.3 mm. The
seam tracking and back bead formation was verified by
implementing the developed feedback control algo-
rithm to the butt weld joint with a joint gap from 3 mm
to 10 mm along the weld seam which is also deviated
by 10 mm from the pre-taught path.

Z. Zhang et al.*® developed a CNN model for in-situ
weld defects prediction in pulsed gas tungsten arc
(GTA) welding of aluminum alloys. In order to increase
the training speed and accuracy of the CNN model, a
system was devised to collect 3-way information simul-

taneously from the top front, top back, and back seam.
Welding was performed on rectangular, dumbbell-shaped,
and ladder-shaped specimens to generate welding defects.
Downsampling was performed on the original images
of 1392x1040 pixels with the arithmetic mean and thus
input images of 100x100 pixels were used. For data
augmentation, the number of datasets was increased by
adding noise (salt and pepper noise) and randomly ap-
plying 15 and 30 degrees rotation to the input images.
After the data augmentation, the accuracy improved by
3.88% from 92.3% to 96.18%, verifying the effective-
ness of data augmentation. In addition, for optimization
of CNN model, the accuracy and the final training
speed were compared by varying 4 convolutional layer
structures and the number of kernels. The training time
and efficiency increased with the number of kernels,
and the accuracy increased with the increase in the
number of feature images excluding 2D images with
only 0 in the pooling layer.

4. Supervised learning with transfer learning

4.1 Research using original data

H. Zhu et al.*” applied a CNN model for defects (normal,
overlap, spatter, porosity) classification on weld surfaces
of Gas Metal Arc Welding (GMAW). Transfer learning
was performed using LeNet-5, and since the softmax
function, which is frequently used in the last layer of
the final fully connected layer of the CNN model, has a
disadvantage of performance degradation when the
number of training datasets is insufficient, Random Forest
and SVM classifier were used for comparison of the
performance. Preprocessing was performed such as median
filtering, image enhancement by gradation processing,
and OTSU image thresholding for all collected images

Table 3 Summary of research using original data and transfer learning

Process Input Output Base network No. of dataset | Ref. No
Classification LeNet-5 +
Gas Metal Arc | 80x120 (px) image - Weld quality Classification 320 (TR¥*) 27
Welding from weld surfaces (Normal, Overlap, Spatter, (Softmax, Random 80 (TE**)
Porosity) Forest, SVM)
Classification AlexNet, VGG-16,
. 150x150 (px) image - Weld quality Resnet-50, 7217 (TR)
Laser Welding from weld surfaces (Normal, Porosity, Level Densenet-121, 814(TE) 28
misalignment) MobileNetV3-Large
Gas Tungsten o Classification .
Arc Spot §40X480 (px) in-situ - Weld pene.tratlon . ResNet 25643 (TR) 29
Weldng image of weld pool (Under,.Des1rable, Excessive 18-layers model 2851 (TE)
penetration)
X -
Laser Welding izriigjzgogﬁxi lélozritll Classification AlexNet 1971 (TR) 30
camera - Pore or No pore 1276 (TE)

* TR: For training; ** TE: For Test
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of defects on weld surfaces. From the results obtained
from softmax, SVM and Random Forest classifiers, the
accuracy obtained using the softmax classifier was the
lowest and the accuracy of the proposed Random
Forest Classifier showed the best performance.

Y. Yang et. al®® used photographs of laser welding area
taken by CMOS digital camera and transfer learning of
a CNN model was performed for classification of weld
quality into 3 classes (normal, porosity, level misalignment)
and 2 classes (qualified, defect). In the basic VGG-16
model, the weight of the convolutional layer was fixed
and training was performed only on the weight of the
FC layer. The result of this model was compared with
the other eight models (pre-optimization AlexNet, Resnet-
50, VGG-16, Densenet-121, MobileNetV3-Large and
post-optimization pre-AlexNet, pre-Resnet-50, and pre-
Densenet-121). The 2-class binary classification achieved
accuracy of 90% or higher in all cases. For multiclass
classification of 3-class, Resnet-50 and MobileNetV3-
Large were the most advanced deep learning algorithm
and showed good performance, but 3 GPUs were need-
ed for the training. The optimized VGG-16 model in the
study showed excellent performance with training time
of 1 hour without having to use GPU.

W. Jiao et al.*” developed a weld penetration prediction
model using CNN in the GTA spot welding process.
Images were collected using the camera positioned on
the top-side of the specimen, and the penetration state
(partial, full and excessive penetration) was predicted
through correlation with the area of the bright parts
from the camera on the back side. For transfer learning,
ResNet model with 18 layers was used and compared
with a 9-layer CNN model. The accuracy of the ResNet
model with transfer learning was 96.35%, and the test
accuracy of the compared CNN model was 92.7%, con-
firming the superiority in the results obtained with
transfer learning.

B. Zhang et al.*” constructed a model for prediction of
the in-situ internal porosity status of aluminum 6061 al-
loy in laser welding. Consisting of 532 nm light and
high-speed camera, in-situ weld-pool images were col-
lected, and the training was performed using porosity oc-

currence information confirmed through image processing
of the longitudinal cross-section. AlexNet-based transfer
learning was performed, and most of the pores were
successfully detected, but during the verification process,
the pores with size of 100 um or less, and some deep
pores were not detected.

4.2 Data augmentation

N. Yang et al.*" proposed a LeNet-5-based transfer
learning CNN model for defect classification using
X-ray weld images. From the images acquired through
the experiment, images around the weld area were ex-
tracted and the contrast in the images was improved by
adjusting the gray level. Since there were not enough
samples in the dataset, the images were rotated, shifted
and blurred and noise was also added to increase the
size of the dataset.

For optimization of the CNN model, each size of con-
volution kernels was varied for evaluation. The larger the
kernel size, there was a slight increase in accuracy and
the convergence became slower. A function that synthe-
sized LReLU and Softplus with reference to 0 was used
for classification to prevent saturation and it was con-
firmed that this function had superior performance than
sigmoid function. When compared with the accuracy
values of LeNet-5, ANN and SVM (0.758, 0.897,
0.982), the developed model showed a superior accu-
racy at 0.993.

C. V. Dung et al.* developed a CNN model for detection
of fatigue cracks from photographic images of welded
joints in a structure. From the images collected from
the structure, sub-images of 64x64-pixel were extracted
and datasets were constructed by classification accord-
ing to the crack occurrence. In order to resolve the
problem of imbalanced training dataset due to smaller
number of images with cracks than images without
cracks, data augmentation was performed through rota-
tion, shift, shear, zoom, and flip of the crack images.
CNNs of three different structures which are shallow
CNN, VGG-16-based BN(Bottle Neck) training, and
VGG-16-based fine-turning training were evaluated. In
all cases, the results with data augmentation showed

Table 4 Summary of research using data augmentation and transfer learning

Process Input Output Base network Data augmentation Ref. No
Classification . .
SO ety | ves | Moo Tion |,
P Y & (2, 5 classes) ’
Transmission 64x64 (px) Classification VGG-16 Rotation, Shift 3
Welds image from surfaces - Crack, No Crack Shear, Zoom, Flip
Journal of Welding and Joining, Epub ahead of print 7
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that the accuracy improved by 2% or higher.

5. Unsupervised learning with autoencoder

CNN models are applied to predict or classify specific
values in welding process but there are also cases when
CNN models are used for feature extraction from ac-
quired images. Autoencoder is unsupervised learning
using CNN and reconstructs the original images through
encoding and decoding processes. In the process, con-
straints such as noise are applied so that key features can
be applied when the original images are reconstructed.
Autoencoder is used when extracting features of the
original images in high dimension or when reduced im-
ages are needed with the features retained.

J. Guenther et al.'” applied autoencoder method with
CNN for feature extraction in laser welding and ex-
tracted 16 features from the input image. The extracted
16 features were used for reinforcement learning, and
the weld quality was achieved by controlling the output
in laser welding.

A. Muniategui et al.*¥ developed a quality determi-
nation model of resistance spot welding using a fuzzy
algorithm. However, the fuzzy algorithm that uses the
original images with high resolution of 1000x800-pixel
as input is not efficient in terms of computation time
for application in real-time process and the data storage
space problem may arise due to the high storage ca-
pacity required. To overcome these limitations, an au-
toencoder was used to reduce the image resolution to
15x15 pixels while retaining the features of the image
and the reduced images were applied to the fuzzy
algorithm. Finally, quality prediction was achieved at an
accuracy of 88% or higher in resistance spot welding.

6. Summary and Qutlook

As can be seen from the review in this study, among
various types of deep learning techniques, CNN models
with images have been actively applied in welding
research. The field of Welding is typically dominated
by tacit knowledge rather than rule-based explicit
knowledge, indicating high applicability of data-based
deep learning, and the applications of CNN in welding
research are expected to increase even further. The
in-situ measurement of waveform-based time series
signals have been actively used in determination of
weld quality in previous studies, and in the future, there
will be increased investigation and adoption of mul-
ti-sensor-based deep learning techniques where con-
tinuous waveform sensors and image sensors are ap-
plied simultaneously. Furthermore, at present, the im-
ages at the time of measurement are used for quality

classification or regression, but in the future, hybrid
models of combining RNN and CNN will be applied,
leading to more intelligent models in which the in-
formation extracted from images in the past will be
transferred to the current state prediction.
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Table 1 Summary of research using original data and training from scratch

Process Input Output Network No. of dataset | Ref. No
Electric 256x256 (px) image | Cassification CNN-FCN 11026 (TR*)
Resistance from cross-sections - Weld quality 13 HL*** 304 (TE**) 16
Welding (Good/Defect)
Classification
. 320%x240 (px) image - Weld quality CNN-FCN
Arc Welding from weld surfaces (Good, Porosity, Undercut, 5 HL 120 17
Spatter)
13; lsitffastiu;ijls()f Classification 7500 (TR)
. A : . |- Weld quality CNN-FCN 5000 (TE)
Laser Welding | from photo diodes, im- (Good, Blowout, 7 HL from 25 18
age sensor, and spec- ; .
Humping, Undercut) welding runs
trometer
Gas Tungsten |400x487 (px) in-situ | ssification 12 models 26666 (TR)
Arc Welding |weld pool image - Weld quality (6 CNNs & 6588 (TE) 20
(2, 4, 6 classes) 6 FCNs)
Regression
. . - Strength
Res1sFance Spot| 128x128 (px) image - Nugget diameter CNN-FCN 90 1
Welding from weld surfaces ; . 11 HL
Classification
- Fracture mode, Expulsion
121x121 (px) in-situ Classification 10 Models (6 CNNs, 10,000 (TR)
Laser Welding |image of weld pool in-|- Penetration {HOG, LBP, BOF, or | 060 (TE) 22
cluding keyhole (2, 3, 4 classes) SAE} + SVM)
* TR: For training; ** TE: For test; *** HL: Hidden Layer
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Table 2 Summary of research using data augmentation and training from scratch

Process Input Output Network Data augmentation Ref. No
Xora 32x32 (px) X-ray Classification (SHI;/TI;)ScelI(s Subsampling
Inspe}:/ction images from - Weld quality HOG. SS A’E ROS**, RUS*** 23
- > > *,
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Table 3 Summary of research using original data and transfer learning

Process Input Output Base network No. of dataset | Ref. No
Classification LeNet-5 +
Gas Metal Arc | 80x120 (px) image - Weld quality Classification 320 (TR¥*) 27
Welding from weld surfaces (Normal, Overlap, Spatter, (Softmax, Random 80 (TE**)
Porosity) Forest, SVM)
Classification AlexNet, VGG-16,
. 150%150 (px) image - Weld quality Resnet-50, 7217 (TR)
Laser Welding from weld surfaces (Normal, Porosity, Level Densenet-121, 814(TE) 28
misalignment) MobileNetV3-Large
Gas Tungsten o Classification .
Arc Spot §40><480 (px) in-situ - Weld pencttratlon ' ResNet 25643 (TR) 29
Weldng image of weld pool (Under,.Desuable, Excessive 18-layers model 2851 (TE)
penetration)
X -
Laser Welding fri:ggzéoggxz 1;10;:;1 Classification AlexNet 1971 (TR) 30
camera - Pore or No pore 1276 (TE)

* TR: For training; ** TE: For Test
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Table 4 Summary of research using data augmentation and transfer learning
Process Input Output Base network Data augmentation Ref. No
Classification . .
X-ray 60x60 (px) . Rotation, Translation
Inspection X-ray images - Weld quality LeNet-3 Blurr, Noise 3

(2, 5 classes)

Transmission 64x64 (px) Classification

Welds image from surfaces

- Crack, No Crack

Rotation, Shift
VGG-16 Shear, Zoom, Flip 32
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