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Abstract

With the development of deep learning technology, research on classification and regression models on welding
phenomena using convolution neural networks (CNNs) are gradually increasing. Part 1 of this study introduced the
characteristics of deep learning models using CNNs and their application to welding studies. In this paper, we re-
viewed recent welding research papers to analyze how to evaluate CNN models and visualize the modeling output,
and details of evaluation index, comparison models, and visiualization methods were explained.
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1. Introduction

There has been recent increase in the application of
machine learning to a wide range of industrial sectors,
and artificial neural networks, one of the machine learn-
ing techniques, have drawn much interest. Research
with adoption of neural networks in welding was first
introduced in the 1990s', and a number of studies
have recently been published applying deep learning
and convolutional neural networks (CNN) to welding.
CNNss triggered a breakthrough in image recognition,
and compared to the previous approaches of extracting
features and learning the relationship between the ex-
tracted features and results, CNNs facilitate more gen-
eralized learning, and its application to welding re-
search has drastically increased.

Part 19 of this review introduces the basic structure
and learning methods of CNN, and the previous stud-
ies®?” that applied CNNs in welding research have
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been categorized into 5 groups according to the criteria
of supervised/unsupervised learning, application of
transfer learning, adoption of feature extraction or data
augmentation in data preprocessing, and the charac-
teristics and applications of the models used were
introduced.

In the case of CNN, due to its complexity in dimension,
it is not easy to perform evaluation and visualization of
the results compared to more traditional and intuitive
models such as linear regression. In this review, we
classify the applicable publications according to evalu-
ation indices, evaluation method and visualization
method used in the research as can be seen in Table 1,
and the cases of applications are introduced

2. Evaluation Metric

For evaluation of the performance of classification
and regression models developed through neural net-
work modeling, evaluation indices such as accuracy



Kidong Lee, Sung Yi, Soongkeun Hyun and Cheolhee Kim

Table 1 Summary of research papers reviewed in this study

Comparison with
Classification / Evaluation c ol P Visualization (}lzg?iléi?én Ref.
Regression index onventiona No.
g method Neural Networks Year)
Classification Accuracy A (Iéglln;;aldl 6)
Regression/ S. Choi
Classification Accuracy (2019) 7
Accuracy,
Classification Confusion Bé%lzlg;lg 8)
matrix
Regression MAPE* Edge detection T'(z?)i};l)da 9)
Accuracy, SCNN*!/CNN
Classification Recall, (pretrained and tuned ¢ (\2/0113;1 ne 10)
F1 score models)
e Mean error %9 Y. Zhang
Classification Cate FCN (2019) 11)
. . Accuracy, FCN, D. Bacioiu
Classification | 1. i ine time CNN(No. of Class) (2019) 12)
. . CNN H. Zhu
Classification Accuracy (Classification module) (2019) 13)
. . . CNN . W. lJiao
Classification Accuracy (with and without 14)
. (2020)
transfer learning)
. . Accuracy, CNN Intermediate Z. Zhang
Classification Training Time (reference) activations (2019) 15)
AlexNet, VGG-16,
Accuracy Resnet-50,
. . ’ Densenet-121, Mobile Intermediate Y. Yang
Classification Trai};(ial(l:allt’ime NetV3-Large activations (2020) 16)
J (pretrained and tunned
models)
Training time . . .
. . ’ | Visual inspection CNN Z. Guo
Classification Mearl;t:rror of expert (No. of layers) (2017) 17)
. . 4 CNN N. Yang
Classification Accuracy SVM* (Proposed model, (2018) 18)
Transfer learning), FCN
Regression/ TPR**, Houg)Ile Circle/ J.-K. Park
Classification TNR* HOG*+SVM, CNN (2019) 19)
LBP*+SVM
Haralick W. Hou
Classification Accuracy feature, SSAE*'’, CNN t-SNE*!? (2'019) 20)
HOG feature
HOG, LBP, 1
. . Accuracy, SAE*", Z. Zhang
+ -
Classification Recall H%C(')Fﬁ]?})’ CNN(No. of layers) -SNE (2020) 21
Classification Accuracy A. Muniategui 22)

(Auto-encoder)

(2017)

*Mean Absolute Percentage Error; **True Positive Rate; **True Negative Rate; **Support Vector Machine;

*SHistogram of Oriented Gradient; **Local Binary Pattern; *"Back Of Features; **Shallow ConvNet;

*Fully Connected Net; *'°Stacked Sparse Autoencoder; *''Sparse autoencoder;
*#12¢ Distributed Stochastic Neighbor Embedding
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and learning rate are used. In most cases, in addition to
the use of evaluation indices, comparative analysis is
performed through comparisons with other models.

2.1 Classification model

The field with most active utilization of image-based
CNN is classification by supervised learning. In a clas-
sification model, each result can be represented using a
confusion matrix according to the prediction result’”,
and the confusion matrix of binary classification, which
has the simplest form, is shown in Fig. 1.

The prediction results of the binary classification
model are classified into True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative
(FN). Of these, true positives and true negatives repre-
sent the cases of good prediction performance, and
false positives and false negatives represent errors. A
false positive is an error that incorrectly classifies a
negative as positive, and a false negative is an error that
classifies a positive as negative.

In some studies, a true positive rate (TPR), a false
positive rate (FPR), a true negative rate (TNR), and a
false negative rate, which represent the percentage of
the each classification result, have been adopted.

When the classification datasets are balanced datasets,
accuracy, which is the ratio of correct classification out
of the total datasets, is sometimes used as an evaluation
index. Conversely, in some cases, the mean error rate,
which is the case of using incorrect classification ratio
out of the total datasets, is employed.

TP+ TN

accuracy) = N P T 1
FN+ FP
(Mean Error Rate ) = TPT FN+ FPTIN ()
Prediction
Positive Negative
IE True False
° § Positive Negative
c
>
=
2
£
2
50 False True
Z Positive Negative

Fig. 1 Confusion matrix for binary classification
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However, if the datasets are imbalanced, the indices
may be biased, so complementary indices such as pre-
cision and recall are needed. Among the data classified
as true by the model, the ratio of real true cases is
called precision, and the ratio of classification as true
when the real value is true is called recall.

. . TP
(preczswn) = TP+ P 3)
TP
(recall) = TP N 4)

The precision and recall are complementary indices,
and the model shows good classification performance
when the values of both indices are high. In addition,
the F1 index (F1 score), which is the harmonic mean of
precision and recall, can be used.

(F1 score) =2 X%

(preecision)  (recall)
(precision) X (recall)

(precision) + (recall)

=2X

When CNN was applied to the classification model,
mean accuracy was used as an evaluation index in most
cases”H11316:18202D) "y yang et al.'® and Z. Zhang et
al.?V used recall as well as mean accuracy as an evalua-
tion index. In particular, C. V. Dung et al.'” used all of
the mean accuracy, recall, and F1 score for evaluation.
Z. Zhang et al?" presented a confusion matrix with
mean accuracy for evaluation. Y. Zhang et al.'” and Z.
Guo et al.'"” used mean error instead of mean accuracy.
J.-K. Park et al.'” emphasized the importance of identi-
fying defective products in the manufacturing process
of parts for which safety is a primary concern, such as
engine transmissions, and used the TP ratio as well as
the TN ratio, which is the accuracy of defect detection,
as evaluation indices.

2.2 Evaluation indices of the regression model

In the regression model, the mean square error (MSE)
based on the difference between the actual and pre-
dicted values is used as a loss function, and the mean
absolute error (MAE) is most frequently used as an
evaluation index.

1 n

MSE= ;E (y' (i) —y(i)) (6)
MAFE = izl Ly (i) —y(@i) | @)
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Here, n represents the total number of data, i is the in-
dex number of data, y(i) is the measured value of the
i-th data, and y'(i) is the predicted value of the i-th data
by the regression model. The closer the mean absolute
error is to 0, the higher the fit of the regression model.
In addition, the mean absolute percentage error
(MAPE) which represents the percentage of the mean
absolute error is defined as in Eq. 8, and mean accu-
racy, the opposite concept, is defined as in Eq. 9.

_ 15 1y @)=yl |
MAPE= n; ) ®
(mean accuracy) =1— MAPE )

The coefficient of determination (R?) is also used to
indicate how well the predicted value obtained through
the regression model explains the correct value.

D) -y )
R*=1-"— (10)
My () -y ()

i=1

o/ (i) represents the mean of the predicted values. The
coefficient of determination is in the range of 0<R*<
1, and the closer the value is to 1, the higher the accu-
racy of the regression model. S. Choi et al.” and T.
Ashida et al.”, who applied the CNN model to the re-
gression model, used mean accuracy and mean error as
evaluation indices, respectively.

3. Comparative evaluation with other models

Various regression and classification models have
been developed for image-based prediction of welding
phenomena. CNN models proposed in a number of pa-
pers are compared with the traditional classifier or oth-
er neural network models and the performance of the
model was verified.

3.1 Comparison with traditional feature extraction
method and classifiers

In addition to neural networks, there are a variety of
methods used for classification and regression. The
conventional models presented in this section describe
methods that have been employed before the in-
troduction of neural networks, and include image proc-
essing algorithms such as Hough transform and contour
extraction algorithm, traditional classifiers, and visual
inspection of skilled personnel that has been tradition-
ally used in manufacturing process.

T. Ashida et al. compared the proposed CNN re-

gression model with the traditional contour extraction
image processing technique and confirmed that errors
in the prediction of molten pool width and leading end
width can be reduced”. Z. Guo et al. evaluated the per-
formance of a CNN model with comparison against the
visual inspection of the skilled worker'”.

Traditional image classification models other than
neural networks can be described by categorizing into
feature extraction and classifier. Feature extraction meth-
ods include HOG (Histogram of Oriented Gradient),
LBP (Local Binary Pattern), Haralick feature®”, and for
classifiers, SVM (Support Vector Machine) is often
used. In order to improve the performance of traditional
feature extraction methods, image processing such as
binarization or contour measurement to highlight fea-
tures is conducted first. HOG is an algorithm that seg-
ments an image into a certain size and normalizes local
cells through a gradient direction distribution to extract
features, and LBP is an algorithm that binarizes 3x3
areas around all pixels in an image to 0 or 1 with rela-
tive brightness. LBP was originally developed to classi-
fy texture, but it is mainly used for image analysis such
as face recognition. Also, Haralick feature is a feature
extraction algorithm based on the gray level gradient of
adjacent pixels. SVM is a classification algorithm using
machine learning and consists of a set of hyper-planes.
It is a classifier that performs classification using a
maximum-margin hyper-plane that maximizes the dis-
tance between data classes in high dimensions.

W. Hou et al.*”, N. Yang et al.'"®, Z. Zhang et al.?",
and J.-K. Park et al.'” compared traditional classifiers
with the proposed CNN model. In the comparison for
performance evaluation, W. Hou et al. used HOG fea-
ture and Haralick feature extraction method?”, and N.
Yang et al. used SVM as a classifier'®. Z. Zhang et al.
compared various traditional classifiers such as HOG,
LBP, HOG+LBP, and BOF with the proposed CNN
model’"" J.-K. Park et al. compared the Hough circle
contour extraction algorithm with the CNN regression
model to evaluate the performance of tracking the cen-
ter point of the engine transmission weld, and also
compared the CNN classification model with HOG+
SVM and LBP+SVM to evaluate performance'?.

3.2 Comparison with other neural network models

For image recognition, SAE(Sparse Auto-Encoder)
image feature extraction method, one of unsupervised
learning neural networks, and CNNs are mainly used.
SAE is a type of auto-encoder, which is unsupervised
learning frequently used for image feature extraction.
Through data flattening, a fully connected neural net-
work (FCN) can also be used for image feature extraction.
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N. Yang et al.'"¥, Y. Zhang et al.'"”, and D. Bacioiu et
al.'? compared the proposed CNN classification model
with the FCN model for performance evaluation. In ad-
dition, W. Hou et al.*” and Z. Zhang et al.*" conducted
performance evaluation using SAE and stacked SAEs,
respectively.

CNN models vary widely depending on their structure
and the adoption of transfer learning, so the perform-
ance of the CNN model can be improved through struc-
ture optimization, and modeling techniques. Thus,
modeling performance can be evaluated using various
CNN model structures and modeling techniques and in
more than half of the papers reviewed, performance
was evaluated through comparison between CNN mod-
els! 012130521,

D. Bacioiu et al. compared the difference in the accu-
racy of the proposed CNN model as the classification
classes became more complex from 2, 4, to 6. C. V.
Dung et al. used mean accuracy, recall, and F1 score
for as evaluation indices comparison of three CNN
models, which are SCNN (Shallow CNN), BN (Bottle
Neck)-CNN, and FT (Fine Tuning) CNN. The compar-
ison between SCNN and CNN model with application
of VGG-16-based transfer learning showed that superi-
or performance was obtained in the model with applica-
tion of transfer learning. In addition, by comparing the
BN-CNN model and the FT-CNN model, it was con-
firmed that through fine-tuning, the accuracy can be
improved through optimization even in the same trans-
fer learning model'""

W. Jiao et al. compared the accuracy of the proposed 9
layer CNN model and the transfer learning CNN
model. Through the comparison, it was confirmed that
the application of transfer learning is effective for
learning with a small amount of training data'?.

H. Zhu et al. compared the accuracy of each classifier
in the CNN model. The feature map was extracted
through the CNN model, and when compared with soft-
max and SVM techniques, which are commonly used
classification methods, the proposed random forest
method showed superior performance'®.

Y. Zhang et al. conducted performance evaluation by
comparing the accuracy of the FCN and the proposed
CNN model. In addition, the cause of the error was in-

vestigated through analysis of misclassified samples'".

4. Visualization

In the reviewed papers, evaluation of the model
through visualization methods is largely divided into
two types: a method of feature extraction of the classi-
fication model through the intermediate activations and
a method of visualizing the classification through a 2D
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graph by using t-SNE.

4.1 Intermediate activations

A feature map that has been filtered by a convolu-
tional filter in the CNN learning process can be repre-
sented as an image, and the highlighted features can be
identified to some extent in lower layers. Intermediate
activations are used as an evaluation method by 1) ex-
tracting feature map of lower layers and determining if
the highlighted features are suitable for the purpose of
the model, or 2) identifying the number of images with
significant features at higher layers.

Y. Yang et al. showed that by visualizing the image of
the first layer of the optimized CNN model through in-
termediate activations, the features of the images suit-
able for the purpose of the model were properly high-
lighted'®.

Z. Zhang et al. visualized and output a feature map at
each CNN layer. Using the number of images with sig-
nificant pixels (images in which values of all pixels are
non-zero) in the feature map of each layer, it was con-
firmed that the proposed model shows effective per-

formance in feature extraction'.

4.2 +-SNE

t-SNE (t-Distributed Stochastic Neighbor Embedding)
is a nonlinear dimensionality reduction technique suit-
able for visualization of high dimensional datasets. It
represents the similarity of data as a distance in two or
three dimensions. This method calculates neighboring
probability in high-dimensional space and low-dimen-
sional space assuming normal distribution by Kullback-
Leibler divergence method and minimizes the proba-
bilities and this process of calculation and minimization
is learned and visualized.

W. Hou et al. extracted features using the Haralick
feature, HOG and SSAE, and two CNN methods with
different depths, and visualized these extracted features
with a 2D map through t-SNE. In addition, the per-
formance of the proposed model was evaluated by
comparing the mean accuracy of classification results
obtained from each method. It was confirmed that the
proposed CNN model showed clear classification in the
t-SNE 2D map compared to other methods, and the
clearer the classification in the visualized 2D map, the
higher the mean accuracy?”.

Z. Zhang et al. extracted features from the optimized
CNN model and visualized the features with a 2D map
through t-SNE. The classification between each group
was visually confirmed on the map, and the cause of
the error was presented by analyzing the section where
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the classification was not clear’".

5. Visualization

There are various types of auto encoders, which are
unsupervised neural networks described above, and
among them, a convolutional auto-encoder is advanta-
geous for image compression. The autoencoder com-
pares the original images and the restored images which
encoded (compressed) and decoded (decompressed)
through the autoencoder, and performs unsupervised
learning. Whether the classification model retains the
features required for classification after image com-
pression can be evaluated through the performance of
the final classification model.

Muniategui et al. used a deep convolutional auto-encoder
for image compression and used the compressed im-
ages as inputs to the fuzzy model*”. 225 vectors were
extracted from the compressed 15x15-pixel image and
grouped by prediction class of Very Good, Good,
Regular, Bad, and Very Bad. For evaluation of the com-
pressed image, the mean of the grouped vectors was
compared with each pattern. The patterns of Very
Good, Good, and Regular groups of the proposed four
fuzzy classification models were similar, and in the
case of Bad and Very Bad groups, the patterns showed
specificity depending on the classification model. In
this case, in the compressed images, the similarity of
the compressed image vectors from the similarity of the
production parts was confirmed, and it was also identi-
fied that there were specific patterns related to the dif-
ference between each classification model. Finally, the
performance of the fuzzy classification model when
images were compressed using a deep convolutional
auto-encoder was evaluated using accuracy.

6. Summary and Qutlook

With the rapid development of deep learning technol-
ogy, it is actively applied in welding research.
Developing a model for application of deep learning
technology is an important part of research, but evalua-
tion of the model by assessing the performance of the
proposed deep learning technology also plays a key
role in research. The excellence of the model can be
verified through visualization and performance indices
in classification and regression models. If an error oc-
curs in prediction through the developed model, it may
be due to various causes such as lack of reproducibility
and nonlinearity of physical phenomena, errors in the
measurement process, and the performance of the mod-
el itself. It is necessary to identify the cause of the error
through the development of a visualization method.

Although the deep learning model is oriented for
end-to-end learning, it is necessary to identify the caus-
es of the error through the development of adequate
evaluation indices and visualization methods.
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& HolFm glom), 7|z AEHE 54 (feature) TS
22 3 Ex7 AE ksl whald) v)sja] Luts) o7l BFrde oS Ad= # A4 (True Positive,
g o] shssle] £RA Lo F=5w 9k TP), AAl <¥d(False Positive, FP), & &4 (True
B oo [V HE NN 72 Tz 2 ks Negative, TN), AR &4 (False Negative, FN)Z
o 2slela. g7 Bok] ONNS Ag3 mRs622e TEHE o] T FY F FHL A2 F &
A =8k, Mot (transfer learning) <l %Oi—r dselrl, Azl AR 340l exkerron)el 3
2 golg AAelo|d BEA ZZo|} golgzal or TR AR FE 8 HolE A X 2R 2
2 Jzow 57 a2ow PHam Aled mue & AL AN FAL s FY0E TR Al
A9 sgrote 2lEd) AR Apode 7 FE Ane vES vepd
@ Ao Ao 2elo] Halale] 7]2e] A &4 Hl&(True Positive Rate, TPR), AAl g H]
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ol A|ztgls} folal] Qth B =Hoail wrg ol Negative Rate, TNR), A% &% H|&(False Negative
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HF=RES Taple 13} 2o] BEslo] ALAHZ & = HolEle] #EALR olFAME We A
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Error Rate)< AH-SH| % g},
AR = mdg S B it ER 2 39 =g
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2 gt ARE ol&ett. Rdo s Ut AR
9 g2 ndio Hly 5L E3)] A vnE £33 (mean Error Rate) = TP ixi §£+ T )
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Table 1 Summary of research papers reviewed in this study

Comparison with
Classification / Evaluation - P Visualization (IllsfbAlittali?orn Ref.
Regression index Conventional Neural Networks No.
method Year)
Classification Accuracy A. (131(1)1111;1)a1d1 6)
Regression/ S. Choi
Classification Accuracy (2019) 7
Accuracy,
Classification Confusion Béﬁ;g;lg 8)
matrix
. . T. Ashida
%
Regression MAPE Edge detection 2019) 9)
Accuracy, SCNN*¥CNN
Classification Recall, (pretrained and tunned ¢ (\2101]3;1 ne 10)
F1 score models)
. . Mean error %9 Y. Zhang
Classification rate FCN (2019) 1
. . Accuracy, FCN, D. Bacioiu
Classification | 1. ¢ hine time CNN(No. of Class) (2019) 12)
. . CNN H. Zhu
Classification Accuracy (Classification module) (2019) 13)
. . . CNN . W. lJiao
Classification Accuracy (with and without (2020) 14)
transfer learning)
. . Accuracy, CNN Intermediate Z. Zhang
Classification Training Time (reference) activations (2019) 15)
AlexNet, VGG-16,
Accuracy Resnet-50,
. . ’ Densenet-121, Mobile Intermediate Y. Yang
Classification Traifr{lfi:rfallgime NetV3-Large activations (2020) 16)
& (pretrained and tunned
models)
Training time . . .
. . > | Visual inspection CNN Z. Guo
Classification Mearr;t:rror of expert (No. of layers) (2017) 17
. . 4 CNN N. Yang
Classification Accuracy SVM* (Proposed model, (2018) 18)
Transfer learning), FCN
Regression/ TPR**, HOUg,,}L Circle/ J.-K. Park
Classification TNR*? HOG*+SVM, CNN (2019) 19)
LBP*+SVM
Haralick W. Hou
Classification Accuracy feature, SSAE*!®, CNN t-SNE*!2 (2‘01 9) 20)
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HOG, LBP 1
. . Accuracy, : ’ SAE*", Z. Zhang
+ -
Classification Recall H%GOFL*]?P’ CNN(No. of layers) i-SNE (2020) 2D
Classification A. Muniategui
(Auto-encoder) Accuracy (2017) 22)

*Mean Absolute Percentage Error; **True Positive Rate; **True Negative Rate; **Support Vector Machine;

*SHistogram of Oriented Gradient; *°Local Binary Pattern; *"Back Of Features; **Shallow ConvNet;

*'Fully Connected Net; *'°Stacked Sparse Autoencoder; *''Sparse autoencoder;
*12t_Distributed Stochastic Neighbor Embedding
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